1. (a) \(P(A) \) is true for \(A = \emptyset \), \(A = S15 \), \(A = S25 \), \(A = S1, 2, 25 \)
(b) \(P(A) \) is false for \(A = S15, S1, 4, S2, 45, \) or \(S1, 2, 45 \)
(c) If \(A = \emptyset \) or \(A = S15 \), then \(A \cap S1, 2, 35 = \emptyset \);
for all other \(A \in S \), \(A \cap S1, 2, 35 \neq \emptyset \).

2. (a) \(P(A) \land Q(A) \) is true for \(A = S17, S35, S51, S1, 35, S1, 53, S3, 53, S1, 3, 53 \); for all other
\(A \in S \), \(P(A) \land Q(A) \) is false.
(b) \(P(A) \lor \neg Q(A) \) is true for all \(A \in S(3, 3, 53) \)
(c) \(P(A) \Rightarrow Q(A) \) is false for all \(A \in S \)
such that \(A \cap 32, 4, 65 = \emptyset \) and \(A = \emptyset \),
so \(P(A) \Rightarrow Q(A) \) is false when \(A = \emptyset \)
and is true for all \(A \in S - \{\emptyset\} \).

3. (a) If \(\sqrt{2} \) is rational and \(\sqrt{3} \) is rational, then
\(\sqrt{3} \) is rational.
Since \(P \) is false we have \(P \land Q \) false and
so \((P \land Q) \Rightarrow R \) is true.

(b) If \(\sqrt{2} \) is irrational or \(\sqrt{3} \) is irrational, then \(\sqrt{3} \) is irrational.
Since \(\neg P \) is true, the statement \((\neg P) \lor Q \)
is true. Since \(R \) is false, the statement
\((\neg P) \lor Q \Rightarrow R \) is false.
4. \[
\begin{array}{c|c|c|c|c}
 P & Q & P \rightarrow Q & P \land (P \rightarrow Q) & (P \land (P \rightarrow Q)) \rightarrow Q \\
 T & T & T & T & T \\
 T & F & F & F & T \\
 F & T & T & F & T \\
 F & F & T & F & T \\
\end{array}
\]

Since all entries in the last column are \(T \),
the statement is a tautology.

5. \[
\begin{array}{c|c|c|c|c|c|c}
 P & Q & \sim P & \sim Q & \sim (P \lor Q) & (\sim P) \land (\sim Q) \\
 T & T & F & F & F & F \\
 T & F & F & T & F & F \\
 F & T & F & T & F & F \\
 F & F & T & T & T & T \\
\end{array}
\]

The truth table above shows that \(\sim (P \lor Q) = (\sim P) \land (\sim Q) \).

\[
\begin{array}{c|c|c|c|c|c|c}
 P & Q & \sim P & \sim Q & \sim (P \lor Q) & (\sim P) \lor (\sim Q) \\
 T & T & F & F & F & F \\
 T & F & F & T & T & T \\
 F & T & F & T & T & T \\
 F & F & T & T & T & T \\
\end{array}
\]

The truth table above shows that \(\sim (P \land Q) = (\sim P) \lor (\sim Q) \).
6. (a) Since $P(x)$ is true for all $x \neq 1$, $P(x) \Rightarrow Q(x)$ is true for $x \neq 1$. When $x = 1$, $P(x)$ is true and $Q(x)$ is false, and so $P(x) \Rightarrow Q(x)$ is false for $x = 1$.

\[\therefore \text{The set on which } P(x) \Rightarrow Q(x) \text{ is true is } \mathbb{R} - \{1\}. \]

(b) $P(x) \Rightarrow Q(x)$ is false when $x^2 \geq 1$ and $x < 1$.

This occurs when $x \in (-\infty, -1] \cup [1, \infty) \cap (-\infty, 1) = (-\infty, -1] \cup [1, \infty) \cap (-\infty, 1) = (-\infty, -1] \cup \emptyset = (-\infty, -1]$

Thus, $P(x) \Rightarrow Q(x)$ is true for all $x \in \mathbb{R} - (-\infty, -1] = (-1, \infty)$.

(c) $P(x) \Rightarrow Q(x)$ is false when $x \in [-1, 2]$ and $x^2 < 2$.

Noting that the domain of x is $S = [-1, 1]$, we have that $P(x) \Rightarrow Q(x)$ is false for $x \in [-1, 1] \cap [1, -\sqrt{2}) \cup (\sqrt{2}, 10] = \emptyset$.

\[\therefore P(x) \Rightarrow Q(x) \text{ is true for all } x \in [-1, 2]. \]
7. (a) Since \(\pm \sqrt{2} \) are the only solutions

to \(x^2 - 2 = 0 \) and \(\pm \sqrt{2} \) are irrational,
the statement is false.

(b) False.

Reason: Given any \(x \in \mathbb{Z} \) there exist (many) \(y \in \mathbb{Z} \)
such \(x+y \neq 1 \).

(c) True. For \(x \in \mathbb{Z} \), choose \(y = 1-x \). Since \(1-x \in \mathbb{R} \)
and \(x + (1-x) = 1 \), the statement is true.

(d) True. Choose \(x = 3 \), \(y = 0 \).

8. (a) For all \(-1 < x < 1 \) there exists a natural
number \(y \) such that \(|x+y| < 1 \).

\[\exists x \in (-1,1) \forall y \in \mathbb{N}, \ |x+y| < 1 \]

\(P \) is false: When \(x = \frac{1}{2} \), \(|x+y| \geq 1 \) for every \(y \in \mathbb{N} \)

(b) There exists \(-1 < x < 1 \) and there exists a natural
number \(y \) such that \(|x+y| < 1 \).

\[\forall x \in (-1,1), \forall y \in \mathbb{N}, \ |x+y| < 1 \]

\(P \) is true: pick \(x = \frac{1}{2} \) and \(y = 1 \).
(c) (i) For all $-1 < x < 1$, there exists $y \in \mathbb{R}$ such that
if $|x + y| < 1$, then $y \geq 1$.

(ii) There exists $x \in (-1, 1)$ such that for all $y \in \mathbb{R}$,
$|x + y| < 1$ and $y < 1$.

(iii) Note that if $y \in \mathbb{R}$, $y < 1$ and so $|x + y| < 1$ and $y < 1$
for every $y \in \mathbb{R}$ (and $x \in (-1, 1)$). It follows
that the statement in (ii) is false and so the original
statement is true.

(d) (i) For all $x \in (-1, 1)$ there exists $y \in \mathbb{R}$ such that if
$x < 1$, then $y < 0$.

(ii) $\exists x \in (-1, 1)$ such that for all $y \in \mathbb{R}$, $x < 1$ and $y \geq 0$

(iii) Letting $x = 0$ we note that for any $y \in \mathbb{R}$, the
statement $x^2 < 1$ and $y \geq 0$ is true and so the
statement in (ii) is true. It follows that our original
statement is false.