1. (a) Write \(x = (x_1, x_2), \ y = (y_1, y_2), \ z = (z_1, z_2) \)

- Since \(|x_1 - y_1|, |x_2 - y_2| \geq 0 \) we have that \(d_m(x, y) \geq 0 \)
- If \(x = y \), then \(d_m(x, y) = \max \{0, 0\} = 0 \).

On the other hand, if \(\max \{ |x_1 - y_1|, 1, |x_2 - y_2| \} = 0 \), then \(x_1 = y_1 \) and \(x_2 = y_2 \). It follows that \(x = y \) when \(d_m(x, y) = 0 \).

- \(d_m \) is clearly symmetric.

- For the triangle inequality, \(d_m(x, y) = \max \{ 1, x_1 - y_1, 1, x_2 - y_2 \} \)
 \[= \max \{ 1, 1, |x_1 - y_1|, |x_2 - y_2| \} \]
 \[\leq \max \{ 1, 1, |x_1 - y_1|, |x_2 - y_2| \} + \max \{ 1, 1, |x_2 - y_1|, |x_2 - y_2| \} \]
 \[= \max \{ 1, 1, |x_1 - y_1|, |x_2 - y_2| \} \]
 \[= d_m(x, z) + d_m(z, y) \]

(b)

\[
\begin{align*}
\text{(d)} & \quad \text{d}_E \\
& \quad \text{(c)} \quad \text{d}_T \\
& \quad \text{(d)} \quad \text{d}_M \\
\end{align*}
\]

2. (a) Write \(f(x) = ax^2 + bx + c \geq 0 \). Since \(f(x) \geq 0 \)

for all \(x \in \mathbb{R} \), \(a > 0 \) and \(f \) attains its minimum at \(\mu = -\frac{b}{2a} \). It follows that \(f(\mu) = c - \frac{b^2}{4a} \geq 0 \)

and so \(\frac{b^2 - c}{4a} \leq 0 \). Since \(a > 0 \) we conclude

\[\frac{b^2 - 4ac}{4a} \leq 0 \]
(b) Observe that \((\sum y_i^2) \lambda^2 - (2\sum x_i y_i) \lambda + (\sum x_i^2) = \sum (x_i - \lambda y_i)^2\) is a non-negative quadratic polynomial. By part (a),

\[4(\sum x_i y_i)^2 - 4\sum y_i^2 \sum x_i^2 \leq 0.\]

It follows that \((\sum x_i y_i)^2 \leq \sum x_i^2 \sum y_i^2\).

The result now follows by taking square roots.

(c) \[\left[d(x, z) + d(z, y) \right]^2 = d^2(x, z) + 2d(x, z)d(z, y) + d^2(z, y)\]

\[= \sum (x_i - z_i)^2 + 2\sqrt{\sum (x_i - z_i)^2} \sqrt{\sum (z_i - y_i)^2} + \sum (z_i - y_i)^2\] (Cauchy-Schwarz)

\[\geq \sum (x_i - z_i)^2 + 2\sum (x_i - z_i)(z_i - y_i) + \sum (z_i - y_i)^2\]

\[= \sum (x_i - 2x_i y_i + y_i^2) + 2\sum (x_i z_i - x_i y_i - y_i z_i + z_i^2) + \sum (z_i - 2y_i z_i + y_i^2)\]

\[= \sum (x_i^2 - 2x_i y_i + y_i^2) = \sum (x_i - y_i)^2 = d^2(x, y).\]

Now take square roots.
3. \(\text{let } U = \{ U : \forall U \subseteq X \text{ and } U \text{ is open in } X \} \).

Pick \(x \in U \). Then \(x \in U \) for some \(U \in U \). Since \(U \) is open in \(X \), there exists \(r > 0 \) such that \(B(x, r) \subseteq U \).

Now we have \(B(x, r) \subseteq U \subseteq Y \) and \(x \in \text{int } Y \).

\[\therefore U \subseteq \text{int } Y. \]

If \(x \in \text{int } Y \), then there exists \(r > 0 \) such that \(B(x, r) \subseteq Y \).

Since \(B(x, r) \) is open in \(X \) (by Theorem 1.1), \(B(x, r) \subseteq U \).

Thus \(x \in B(x, r) \subseteq U \).

\[\therefore \text{int } Y \subseteq U. \]

\[\therefore U \subseteq \text{int } Y. \]

\[\therefore U \subseteq Y. \]

4. \(\text{let } U' = \{ A : \forall A \subseteq X \text{ and } A = \overline{A} \} \).

Check \(x \in \overline{A} \). Suppose \(B(x, r) \cap Y = \emptyset \) for some \(r > 0 \).

Then \(X - B(x, r) \) is a closed set that contains \(Y \)

\[\text{i.e., } X - B(x, r) \subseteq \overline{Y} \text{ and } x \in X - B(x, r) \Rightarrow \]

\[\therefore B(x, r) \subset \overline{Y} \neq \emptyset \text{ for all } r > 0 \text{ and } x \in Y. \]

\[\therefore \overline{A} \subseteq \overline{Y}. \]

Pick \(x \in \overline{Y} \). Suppose \(x \notin A \) for some \(A \subseteq U \). Then \(x \in X - A \)

which is open in \(X \) and so there exists \(r > 0 \) such that \(B(x, r) \subseteq X - A \). Since \(Y \subseteq A \) it follows that \(B(x, r) \cap Y = \emptyset \).

This implies that \(x \notin Y \Rightarrow \).

We conclude that \(x \in A \) for all \(A \subseteq U \) and so \(\overline{Y} = \bigcap A. \)

\[\text{Conclusion: } \overline{Y} = \bigcap A. \]
5. *Euclidean*: let \((x,y) \in S\) and let \(r > 0\). Then\((x,y) + \frac{r}{2} (x,y) \subseteq B((x,y), r) \cap (\mathbb{R}^2 - S)\) and so\(B((x,y), r) \nsubseteq S\). It follows that \((x,y) \notin \text{int} S\).

Concl.: \(\text{int} S = \emptyset\).

Discrete: let \((x,y) \in S\). Then\(B((x,y), \frac{1}{2}) \subseteq B((x,y)) \subseteq S\) and so \((x,y) \in \text{int} S\). Concl.: \(\text{int} S = S\).

6. Write \(C(x,r) = \{y \in X \mid d(x,y) \leq r\}\). Let \(x \in X - C(x,r)\) and define \(S = d(x,r) - r\).

Claim: \(B(x, S) \subseteq X - C(x,r)\).

Proof: let \(q \in B(x, S)\).

Then \(d(x,q) \leq d(x,q) + d(q,r)\)

\[< d(x,q) + S = d(x,q) + d(x,r) - r.\]

It follows that \(r < d(x,q)\) and so \(q \notin C(x,r)\).

Claim Done.

From this we conclude that \(X - C(x,r)\) is open and so \(C(x,r)\) is closed.

In \(\mathbb{R}^2\) with the Euclidean metric, note that \(B((0,0), 1) = \overline{B}(0,0) = \{x \in \mathbb{R}^2 \mid \|x\| \leq 1\}\), but \(C((0,0), 1) = \mathbb{R}^2\).

Concl.: The closure of an open ball is not necessarily equal to the closed ball of the same radius.
Claim: \(\overline{B(x, r)} = C(x, r) \)

Proof: Given \(y \in \overline{B(x, r)} \), there is a sequence \(\{x_n\} \subseteq \overline{B(x, r)} \) such that \(x_n \to y \). Now \(d_e(x_n, y) = d_e(x_n, y) + d_e(y, y) < r + d_e(x_n, y) \to r + 0 = r \)

It follows that \(d_e(x, y) \leq r \) and so \(y \in C(x, r) \)

\(\therefore \overline{B(x, r)} \subseteq C(x, r) \).

Note that we didn't use any properties of \(d_e \) here; this inclusion holds in any metric space.

We now show that \(\overline{C(x, r)} \subseteq \overline{B(x, r)} \). Since \(\overline{B(x, r)} \subseteq \overline{B(x, r)} \), it suffices to show that \(d_e(C(x, r)) \subseteq \overline{B(x, r)} \). So, choose \(y \in \overline{B(x, r)} \) with \(d_e(x, y) = r \). Define \(x = (x_1, \ldots, x_n) \), \(y = (y_1, \ldots, y_n) \) and define a sequence \(z_n = \frac{1}{n} x + (1 - \frac{1}{n}) y \).

Now \(d_e^2(z_n, y) = \sum \left(\frac{1}{n} x_i + (1 - \frac{1}{n}) y_i - y_i \right)^2 \)
\[= \sum \left(\frac{1}{n} x_i - y_i \right)^2 \]
\[= \frac{1}{n} \sum (x_i - y_i)^2 = \frac{1}{n} d_e(x, y) = \frac{r}{n} \to 0 \]

It follows that \(z_n \to y \).

Also, \(d_e^2(z_n, x) = \sum \left(\frac{1}{n} x_i + (1 - \frac{1}{n}) y_i - x_i \right)^2 \)
\[= (1 - \frac{1}{n})^2 \sum (x_i - y_i)^2 = (1 - \frac{1}{n})^2 d_e(x, y) \]
\[< r \]
and so \(\overline{C(x, r)} \subseteq \overline{B(x, r)} \). It follows that \(y \in \overline{B(x, r)} \) and so \(\overline{B(x, r)} \subseteq \overline{B(x, r)} \).

We have shown \(\overline{B(x, r)} = \overline{C(x, r)} \) in \((\mathbb{R}^n, d_e) \)
7. \(\to \) Assume that \(U \) is open in \((X,d)\) if and only if \(U \) is open in \((X,p)\) and let \(\{x_n\} \subset X \) with \(\lim_{n \to \infty} d(x_n, x) = 0 \) (i.e., \(\{x_n\} \) is a \(d \)-convergent sequence. We must show that \(\{x_n\} \) is \(p \)-convergent. So, let \(\varepsilon > 0 \). Since \(B_p(x, \varepsilon) \) is open in \((X,d)\), there exists \(r > 0 \) such that \(B_d(x, r) \subseteq B_p(x, \varepsilon) \) (here \(B_p(x, \varepsilon) \) denotes the open ball in \((X,p)\)). Similarly, for \((B_d(x, r)) \), choose \(N \in \mathbb{N} \) such that \(d(x_n, x) < r \) for all \(x_n \in (X,d) \) and hence \(p(x, x_n) < \varepsilon \) whenever \(n \geq N \). It follows that \(\lim_{n \to \infty} p(x, x_n) = 0 \) and so \(\{x_n\} \) converges to \(x \) in \((X,p)\).

\(\leftarrow \) Assume that a sequence \(\{x_n\} \subset X \) converges in \((X,d)\) if and only if it converges in \((X,p)\).

Let \(U \subset X \) be open in \((X,d)\). Then \(X \setminus U \) is closed in \((X,d)\).

Pick \(z \in X \setminus U \). Since \(z \) is adherent to \(X \setminus U \) in \((X,d)\), there exists a sequence \(\{z_n\} \subset X \setminus U \) that converges to \(z \) in \((X,d)\).

By assumption, \(\{z_n\} \) converges to \(z \) in \((X,p)\) and so \(z \) is adherent to \(X \setminus U \) in \((X,p)\). It follows that \(X \setminus U \) is closed in \((X,p)\) and so \(U \) is open in \((X,p)\). * See next page.

8. Assume \(\sum d(x_n, x_{n+1}) = S \). Let \(\varepsilon > 0 \) be given. There exist \(N \) such that if \(p > N \), then \(S - \sum d(x_k, x_{k+1}) < \varepsilon \). Now, let \(m, n \geq N \) and assume without loss of generality \(m < n \). Then
\[
d(x_m, x_n) \leq d(x_m, x_{m+1}) + \ldots + d(x_{n-1}, x_n) \leq \sum_{k=p}^{N-1} d(x_k, x_{k+1}) < \varepsilon.
\]

\(\therefore \) \(\{x_n\} \) is Cauchy.
In #7 (e) I used the fact that if \(\mathbf{z} \to z \) in \((X, d)\) and \(\mathbf{z'} \to z' \) in \((X', f)\), then \(z = z' \). You should confirm that this is indeed true.

8. (a) (Indirect) Let \(S_n = \sum d(x_k, x_{k+1}) \). Since \(\sum d(x_k, x_{k+1}) \) is convergent, the sequence \(S_n \) also converges to some number \(S \) in \(\mathbb{R} \). It follows that \(S_n < R \) is Cauchy.

So, given \(\varepsilon > 0 \) let \(N \) be such that if \(m, n \geq N \), then \(|S_{m-1} - S_{n-1}| < \varepsilon \). Now, if \(m = n \geq N \) we have

\[
d(x_m, x_n) = d(x_m, x_{m+1}) + \cdots + d(x_{m-1}, x_n) = S_{m-1} - S_{n-1} < \varepsilon
\]

\[\therefore \mathbf{z}_n \text{ is Cauchy.}\]