1. Prove (as we did in class) that x, y, z is a primitive Pythagorean triple if and only if there are $s, t \in \mathbb{N}_{>0}$ such that $s > t$, $\gcd(s, t) = 1$, and one of s and t is even while the other is odd.

2. Show that $3, 4, 5$ is the smallest Pythagorean triple in the sense that if x', y', z' is another triple, then $x \leq x'$, $y \leq y'$ and $z \leq z'$.

3. Show that $1, \frac{1}{2} + \frac{\sqrt{3}}{2}i$, and $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ are exactly the three cube roots of unity in \mathbb{C} (you can use that a polynomial has exactly the number of its degree zeros over the complex numbers).

4. Prove (as in class or by another method) that there does not exist $x, y, z \in \mathbb{N}_{>0}$ such that $x^4 + y^4 = z^2$ (you should not, of course, use Fermat’s last theorem).

5. Let (x, y) be a rational point (so both x and y are rational) in the first quadrant on the unit circle about the origin and which does not lie on either axis. Let L be the line connecting (x, y) and $(-1, 0)$. Prove that the y-intercept of L is rational.