Math 482, Abstract Algebra II, Spring 2012
Homework 10, due Tuesday 5/8

Read sections:
1. 5.2

Do the following problems:
1. 5.1: 19, 21, 41a (Note that I’m removing 41a from the assignment...you don’t need to write it up and turn it in).

2. Suppose that R is a UFD, $B \subseteq R - \{0\}$ is a finite nonempty set. Prove that
 (i) if b is an h.c.f. of B and $b' \sim b$ then b' is an h.c.f. of B.
 (ii) if b, b' are h.c.f.s of B, then $b \sim b'$.

3. Suppose that R is a UFD and $B \subseteq R = \{0\}$ is a finite nonempty set. Prove that an h.c.f. of B exists.
 The following is a sketch of the proof. Since R is a UFD, if $r \in R - \{0\}$ is not a unit, there are irreducibles p_1, \ldots, p_n such that $r = p_1 \cdots p_n$ and the number of irreducibles appearing in any such expression is unique (this by definition). So we may define a function
 \[\ell : R - \{0\} \to \mathbb{N} \]
 given by
 \[\ell(r) = \begin{cases} n & \text{if } r \text{ is not a unit and can be decomposed into a product of } n \text{ irreducibles} \\ 0 & \text{if } r \text{ is a unit.} \end{cases} \]
 Conclude that $\ell(rs) = \ell(r) + \ell(s)$ for all $r, s \in R - \{0\}$. Conclude that $\ell(r) \leq \ell(s)$ if $r \mid s$ for all $r, s \in R - \{0\}$.

 Now let $T = \{ r \in R \mid r \text{ divides } b \text{ for all } b \in B \}$. We know $T \neq \emptyset$ since $1 \in T$.
 Conclude that $S = \{ \ell(r) \mid r \in T \}$ is bounded above. By the WOA (upside down—every bounded nonempty subset of \mathbb{N} has a maximal element) we can find $a \in T$ be such that $\ell(a)$ is maximal in S.
 By construction $a \mid b$ for all $b \in B$. Suppose $c \mid b$ for all $b \in B$. We need to show that $c \mid a$.

 Repeating the construction above, let $T' = \{ r \in R \mid r \text{ divides } a \text{ and } c \}$ and $S' = \{ \ell(r) \mid r \in T' \}$. Again T' is not empty and S' is bounded, so there is a $d \in T$ such that $\ell(d)$ is as large as possible. Write $a = da_1$ and $c = dc_1$. If c_1 is a unit, conclude that $c \mid a$ as required. If c_1 is not a unit, then let π be an irreducible divisor of c_1. Note that $\ell(d\pi) = \ell(d) + 1 > \ell(d)$, so that $d\pi$ does not divide both a and c (because $\ell(d)$ was as large as possible). Since $d\pi \mid c = dc_1$ it follows that $d\pi$ does not divide a. Conclude that π does not divide a_1.

 Now for each $b \in B$, write $b = af_b = da_1f_b$ (we can do this since $a \mid b$ for all $b \in B$). Note that π is prime since it is irreducible. We know that $c\pi \mid c$, and $c \mid b$, so $c\pi \mid b$ or $d_1\pi \mid da_1f_b$, that is $c_1\pi \mid a_1f_b$ or $\pi \mid a_1f_b$ for all $b \in B$. Since π does not divide a_1 (as we saw above) it follows that $\pi \mid f_b$ for all $b \in B$. Conclude that $a\pi \mid b$ for all $b \in B$. This is a contradiction because $\ell(a\pi) = \ell(a) + 1 > \ell(a)$, but $\ell(a)$ was chosen to be maximal.

4. Suppose that R is a UFD, $f, g \in \mathbb{R}[x] - \{0\}$. Prove that
(i) there is \(f_1 \in R[x] \) and \(\alpha \in R \) such that
- \(f = \alpha f_1 \)
- \(f_1 \) is primitive
- \(\alpha \) is an h.c.f. of \(f \).

(ii) if \(f = \alpha g \) for \(\alpha \in R \) and \(g \in R[x] \) primitive, then \(\alpha \) is an h.c.f. of \(f \). (A proof is given below, so you can skip this one).

(iii) if \(\alpha \) is an h.c.f. of \(f \) and \(\beta \) is an h.c.f. of \(g \), then \(\alpha \beta \) is an h.c.f. of \(fg \).

Here’s a proof of 4(ii), so you can see how they go.

Let \(\lambda \) be an h.c.f. of \(f \). It is enough so show (by problem 2(i) above) that \(\alpha \sim \lambda \). To that end, write \(f = a_n x^n + \cdots + a_0 \) and \(g = b_n x^n + \cdots + b_0 \). Of course \(f = \alpha g \) implies that \(a_i = \alpha b_i \), that is, \(\alpha \mid a_i = \alpha b_i \) for all \(i = 0, \ldots, n \). It follows (by definition) that \(\alpha \mid \lambda \), and thus that there there is some \(t \in R \) such that \(\lambda = \alpha t \). But since \(\lambda \mid a_i \), we have \(\alpha t \mid a_i \) for all \(i = 0, \ldots, n \). Let \(s \in R \) be such that \(\alpha ts = \alpha b_i \). Since \(R \) is an integral domain, we get that \(ts = b_i \), or \(t \mid b_i \) for all \(i = 0, \ldots, n \). But \(g \) is primitive, thus \(1 \) is an h.c.f. of \(g \), and so \(t \mid 1 \) (by definition). We conclude that \(t \) is a unit so that \(\alpha \sim \lambda \) as required.

The grader will carefully consider 5.1.19, 4i.