Bicycle Project
\[w \text{ for upper & lower legs} \]

Assume \(w \) is sinusoidal

\[w_{\text{max}} - w \]

\[\int w \, dt = \Delta \theta \]

\[\Delta t \]

\[t \]

\[w = w_{\text{max}} \sin \Omega t \]

\(\Omega \) is frequency of above curve.

\[P = 2 \Delta t = \frac{2\pi \text{ rad}}{\Omega \text{ rad/sec}} \]

\[\Omega = \frac{\pi}{\Delta t} \text{ rad/sec} \]

\[w = w_{\text{max}} \sin \frac{\pi}{\Delta t} t \]

\[\theta = \int w \, dt = w_{\text{max}} \int \sin \frac{\pi}{\Delta t} t \, dt \]

\[\Delta \theta = w_{\text{max}} \int_0^\pi \sin \frac{\pi}{\Delta t} t \, dt \]

\[\Delta \theta = -w_{\text{max}} \frac{\Delta t}{\pi} \cos \frac{\pi}{\Delta t} t \bigg|_0^\pi \]
\[\Delta \theta = \omega_{max} \frac{\Delta t}{\pi}. \]

\[\omega_{max} = \frac{\pi}{\Delta t} \Delta \theta = \frac{n \text{ rad}}{n \text{ sec}} \]

\[\alpha = \omega_{max} \Omega \cos \Omega t \]

\[\alpha_{max} = \omega_{max} \frac{\pi}{\Delta t} \]

Since \(M = J \cdot \alpha \) could use this result to get \(M_{max} \) on upper & lower legs. \(M \) applied by muscles at knee and hip to make joints rotate.