PROBLEM 15.81

A 3 in.-radius drum is rigidly attached to a 5-in.-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that end E of the cord is pulled to the left with a velocity of 6 in./s, determine (a) the angular velocity of the drums, (b) the velocity of the center of the drums, (c) the length of cord wound or unwound per second.

![Diagram of drums and cord](image)

PROBLEM 15.86

Knowing that at the instant shown the angular velocity of rod BE is 4 rad/s counterclockwise, determine (a) the angular velocity of rod AD, (b) the velocity of collar D, (c) the velocity of Point A.

![Diagram of rod and collar](image)

PROBLEM 15.111

An automobile travels to the left at a constant speed of 48 mi/h. Knowing that the diameter of the wheel is 22 in., determine the acceleration (a) of Point B, (b) of Point C, (c) of Point D.

![Diagram of automobile](image)

PROBLEM 15.141

Rod AB moves over a small wheel at C while end A moves to the right with a constant velocity v_A. Using the method of Section 15.9, derive expressions for the angular velocity and angular acceleration of the rod.

![Diagram of rod and wheel](image)