PROBLEM 15.181

All dimensions given, \(\frac{\Delta B}{\Delta D} \) given, constant

Want \(\frac{\Delta F}{\Delta B D}, \frac{\Delta F}{\Delta A D} \)

\(F \) is a point on rod coincident with \(E \) at time shown. It is not the generic point coincident with \(E \) for all configurations. If it were, \(\vec{V}_F \) & \(\vec{a}_F \) would be zero, since \(F \) would always be at \(E \) \& \(VE = 0 \).

Thus \(F \) is a point on the rod at a distance from \(B \) of \(\sqrt{\Delta B^2 + \Delta E^2} \). It could be painted on rod. That's the point for which we want \(\vec{V} \) & \(\vec{a} \).
Set up coordinate systems so that \[Y \]

\[X \]

\[F = E \]

Since \(F \) at \(\angle \)F from B, it never moves within xy system. To an observer at B, \(F \) is always at \(\angle \)F. (So there is no \(\hat{j} \) component to this length.)

This is a standard relative velocity problem.

\[\overrightarrow{w}_{BD} \]

\[\dot{\overrightarrow{r}} \]

\[\hat{j} = \sin \theta \hat{i} - \cos \theta \hat{j} \]

\[\hat{i} = \text{you figure it out} \]
ACCELERATION

Again, since \(F \) is fixed in \(xy \) system, this is a standard relative acceleration problem.

\[
\ddot{a}_F = \ddot{a}_E + \dot{a}_E \times \dot{a}_E
\]

If this is worked through however, there are 3 unknowns & only 2 equations: \(AFX \), \(AFE \), \(AB \).

The trouble is that we don't know the direction of \(\ddot{a}_E \). It's not like the slider crank. There is no rigid cylinder @ \(E \) allowing only motion along the \(\theta \) direction. The collar is free to rotate, so the \(\ddot{a}_E \) need not be along an axis where the rod is fixed.

So we don't have enough equations. So what to do?
Point E doesn't move:

\[V_E = 0, \quad a_E = 0 \]

We can write an equation for acceleration (5-term) that has all the terms in it:

\[a_E = a_B + \ldots \]

When this is written out and all terms are added, should get 0. Note that \(a_E - \text{car} \neq 0 \) since to an observer at B, \(\| \text{BE} \| \) is getting longer & longer. So \(V_{\text{Ex}} \) & \(a_{\text{Ex}} \neq 0 \).

This relationship between \(\text{B} \) & \(E \) leads to two more equations. One of them can be used for the third equation needed.