Internet Supplement
for Vector Calculus
Fifth Edition
Version: October, 2003

Jerrold E. Marsden
California Institute of Technology

Anthony Tromba
University of California, Santa Cruz

W.H. Freeman and Co.
New York
Contents

Preface
iii

2 Differentiation
1
2.7 Some Technical Differentiation Theorems
1

3 Higher-Order Derivatives and Extrema
17
3.4A Second Derivative Test: Constrained Extrema
17
3.4B Proof of the Implicit Function Theorem
21

4 Vector Valued Functions
25
4.1A Equilibria in Mechanics
25
4.1B Rotations and the Sunshine Formula
30
4.1C The Principle of Least Action
42
4.4 Flows and the Geometry of the Divergence
58

5 Double and Triple Integrals
65
5.2 Alternative Definition of the Integral
65
5.6 Technical Integration Theorems
71

6 Integrals over Curves and Surfaces
83
6.2A A Challenging Example
84
6.2A The Gaussian Integral
88

8 The Integral Theorems of Vector Analysis
91
8.3 Exact Differentials
91
8.5 Green’s Functions ... 94
Selected Answers for the Internet Supplement 107
Practice Final Examination 123
Practice Final Examination Solutions 129
Preface

The Structure of this Supplement. This Internet Supplement is intended to be used with the 5th Edition of our text *Vector Calculus*. It contains supplementary material that gives further information on various topics in Vector Calculus, including different applications and also technical proofs that were omitted from the main text.

The supplement is intended for students who wish to gain a deeper understanding, usually by self study, of the material—both for the theory as well as the applications.

Corrections and Website. A list of corrections and suggestions concerning the text and instructors guide are available available on the book’s website:

http://www.whfreeman.com/MarsdenVC5e

Please send any new corrections you may find to one of us.

More Websites. There is of course a huge number of websites that contain a wealth of information. Here are a few sample sites that are relevant for the book:

1. For spherical geometry in Figure 8.2.13 of the main text, see http://torus.math.uiuc.edu/jms/java/dragisphere/
 which gives a nice JAVA applet for parallel transport on the sphere.

2. For further information on the Sunshine formula (see §4.1C of this internet supplement), see http://www.math.niu.edu/~rusin/uses-math/position.sun/
3. For the Genesis Orbit shown in Figure 4.1.11, see
http://genesismission.jpl.nasa.gov/

4. For more on Newton, see for instance,
http://scienceworld.wolfram.com/biography/Newton.html
and for Feynman, see
http://www.feynman.com/

5. For surface integrals using Mathematica Notebooks, see
http://www.math.umd.edu/~jmr/241/surfint.htm

Practice Final Examination. At the end of this Internet Supplement, students will find a Practice Final Examination that covers topics in the whole book, complete with solutions. We recommend, if you wish to practice your skills, that you allow yourself 3 hours to take the exam and then self-mark it, keeping in mind that there is often more than one way to approach a problem.

Acknowledgements. As with the main text, the student guide, and the Instructors Manual, we are very grateful to the readers of earlier editions of the book for providing valuable advice and pointing out places where the text can be improved. For this internet supplement, we are especially grateful to Alan Weinstein for his collaboration in writing the supplement on the sunshine formula (see the supplement to Chapter 4) and for making a variety of other interesting and useful remarks. We also thank Brian Bradie and Dave Rusin for their helpful comments.

We send everyone who uses this supplement and the book our best regards and hope that you will enjoy your studies of vector calculus and that you will benefit (both intellectually and practically) from it.

Jerrold Marsden (marsden@cds.caltech.edu)
Control and Dynamical Systems
Caltech 107-81
Pasadena, CA 91125

Anthony Tromba (tromba@math.ucsc.edu)
Department of Mathematics
University of California
Santa Cruz, CA 95064
2
Differentiation

In the first edition of *Principia* Newton admitted that Leibniz was in possession of a similar method (of tangents) but in the third edition of 1726, following the bitter quarrel between adherents of the two men concerning the independence and priority of the discovery of the calculus, Newton deleted the reference to the calculus of Leibniz. It is now fairly clear that Newton’s discovery antedated that of Leibniz by about ten years, but that the discovery by Leibniz was independent of that of Newton. Moreover, Leibniz is entitled to priority of publication, for he printed an account of his calculus in 1684 in the *Acta Eruditorum*, a sort of “scientific monthly” that had been established only two years before.

Carl B. Boyer
A History of Mathematics

§2.7 Some Technical Differentiation Theorems

In this section we examine the mathematical foundations of differential calculus in further detail and supply some of the proofs omitted from §§2.2, 2.3, and 2.5.

Limit Theorems. We shall begin by supplying the proofs of the limit theorems presented in §2.2 (the theorem numbering in this section cor-
2 2 Differentiation

responds to that in Chapter 2). We first recall the definition of a limit.¹

Definition of Limit. Let \(f : A \subset \mathbb{R}^n \to \mathbb{R}^m \) where \(A \) is open. Let \(x_0 \) be in \(A \) or be a boundary point of \(A \), and let \(N \) be a neighborhood of \(b \in \mathbb{R}^m \). We say \(f \) is eventually in \(N \) as \(x \) approaches \(x_0 \) if there exists a neighborhood \(U \) of \(x_0 \) such that \(x \neq x_0, x \in U \), and \(x \in A \) implies \(f(x) \in N \). We say \(f(x) \) approaches \(b \) as \(x \) approaches \(x_0 \), or, in symbols,

\[
\lim_{x \to x_0} f(x) = b \quad \text{or} \quad f(x) \to b \quad \text{as} \quad x \to x_0,
\]

when, given any neighborhood \(N \) of \(b \), \(f \) is eventually in \(N \) as \(x \) approaches \(x_0 \). If, as \(x \) approaches \(x_0 \), the values \(f(x) \) do not get close to any particular number, we say that \(\lim_{x \to x_0} f(x) \) does not exist.

Let us first establish that this definition is equivalent to the \(\varepsilon \)-\(\delta \) formulation of limits. The following result was stated in §2.2.

Theorem 6. Let \(f : A \subset \mathbb{R}^n \to \mathbb{R}^m \) and let \(x_0 \) be in \(A \) or be a boundary point of \(A \). Then \(\lim_{x \to x_0} f(x) = b \) if and only if for every number \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that for any \(x \in A \) satisfying \(0 < \| x - x_0 \| < \delta \), we have \(\| f(x) - b \| < \varepsilon \).

Proof. First let us assume that \(\lim_{x \to x_0} f(x) = b \). Let \(\varepsilon > 0 \) be given, and consider the \(\varepsilon \) neighborhood \(N = D_{\varepsilon}(b) \), the ball or disk of radius \(\varepsilon \) with center \(b \). By the definition of a limit, \(f \) is eventually in \(D_{\varepsilon}(b) \), as \(x \) approaches \(x_0 \), which means there is a neighborhood \(U \) of \(x_0 \) such that \(f(x) \in D_{\varepsilon}(b) \) if \(x \in U \), \(x \in A \), and \(x \neq x_0 \). Now since \(U \) is open and \(x_0 \in U \), there is a \(\delta > 0 \) such that \(D_\delta(x_0) \subset U \). Consequently, \(0 < \| x - x_0 \| < \delta \) and \(x \in A \) implies \(x \in D_\delta(x_0) \subset U \). Thus \(f(x) \in D_{\varepsilon}(b) \), which means that \(\| f(x) - b \| < \varepsilon \). This is the \(\varepsilon \)-\(\delta \) assertion we wanted to prove.

We now prove the converse. Assume that for every \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that \(0 < \| x - x_0 \| < \delta \) and \(x \in A \) implies \(\| f(x) - b \| < \varepsilon \). Let \(N \) be a neighborhood of \(b \). We have to show that \(f \) is eventually in \(N \) as \(x \to x_0 \); that is, we must find an open set \(U \subset \mathbb{R}^n \) such that \(x \in U, x \in A, \) and \(x \neq x_0 \) implies \(f(x) \in N \). Now since \(N \) is open, there is an \(\varepsilon > 0 \) such that \(D_\varepsilon(b) \subset N \). If we choose \(U = D_\varepsilon(x) \) (according to our assumption), then \(x \in U, x \in A \) and \(x \neq x_0 \) means \(\| f(x) - b \| < \varepsilon \), that is \(f(x) \in D_\varepsilon(b) \subset N \).

Properties of Limits. The following result was also stated in §2.2. Now we are in a position to provide the proof.

¹For those interested in a different pedagogical approach to limits and the derivative, we recommend *Calculus Unlimited* by J. Marsden and A. Weinstein. It is freely available on the Vector Calculus website given in the Preface.
Theorem 2. Uniqueness of Limits. If

\[\lim_{x \to x_0} f(x) = b_1 \quad \text{and} \quad \lim_{x \to x_0} f(x) = b_2, \]

then \(b_1 = b_2 \).

Proof. It is convenient to use the \(\varepsilon-\delta \) formulation of Theorem 6. Suppose \(f(x) \to b_1 \) and \(f(x) \to b_2 \) as \(x \to x_0 \). Given \(\varepsilon > 0 \), we can, by assumption, find \(\delta_1 > 0 \) such that if \(x \in A \) and \(0 < \| x - x_0 \| < \delta_2 \), then \(\| f(x) - b_1 \| < \varepsilon \), and similarly, we can find \(\delta_2 > 0 \) such that \(0 < \| x - x_0 \| < \delta_2 \) implies \(\| f(x) - b_2 \| < \varepsilon \). Let \(\delta \) be the smaller of \(\delta_1 \) and \(\delta_2 \). Choose \(x \) such that \(0 < \| x - x_0 \| < \delta \) and \(x \in A \). Such \(x \)'s exist, because \(x_0 \) is in \(A \) or is a boundary point of \(A \). Thus, using the triangle inequality,

\[\| b_1 - b_2 \| = \| (b_1 - f(x)) + (f(x) - b_2) \| \]
\[\leq \| b_1 - f(x) \| + \| f(x) - b_2 \| < \varepsilon + \varepsilon = 2\varepsilon. \]

Thus for every \(\varepsilon > 0 \), \(\| b_1 - b_2 \| < 2\varepsilon \). Hence \(b_1 = b_2 \), for if \(b_1 \neq b_2 \) we could let \(\varepsilon = \| b_1 - b_2 \| /2 > 0 \) and we would have \(\| b_1 - b_2 \| < \| b_1 - b_2 \| \), an impossibility. \(\blacksquare \)

The following result was also stated without proof in §2.2.

Theorem 3. Properties of Limits. Let \(f : A \subset \mathbb{R}^n \to \mathbb{R}^m \), \(g : A \subset \mathbb{R}^n \to \mathbb{R}^m \), \(x_0 \) be in \(A \) or be a boundary point of \(A \), \(b \in \mathbb{R}^m \), and \(c \in \mathbb{R} \); the following assertions then hold:

(i) If \(\lim_{x \to x_0} f(x) = b \), then \(\lim_{x \to x_0} cf(x) = cb \), where \(cf : A \to \mathbb{R}^m \) is defined by \(x \mapsto c(f(x)) \).

(ii) If \(\lim_{x \to x_0} f(x) = b_1 \) and \(\lim_{x \to x_0} g(x) = b_2 \), then

\[\lim_{x \to x_0} (f + g)(x) = b_1 + b_2, \]

where \((f + g) : A \to \mathbb{R}^m \) is defined by \(x \mapsto f(x) + g(x) \).

(iii) If \(m = 1 \), \(\lim_{x \to x_0} f(x) = b_1 \), and \(\lim_{x \to x_0} g(x) = b_2 \), then

\[\lim_{x \to x_0} (fg)(x) = b_1 b_2, \]

where \((fg) : A \to \mathbb{R} \) is defined by \(x \mapsto f(x)g(x) \).

(iv) If \(m = 1 \), \(\lim_{x \to x_0} f(x) = b \neq 0 \), and \(f(x) \neq 0 \) for all \(x \in A \), then

\[\lim_{x \to x_0} \frac{1}{f} = \frac{1}{b} \]

where \(1/f : A \to \mathbb{R} \) is defined by \(x \mapsto 1/f(x) \).
4 2 Differentiation

(v) If \(f(x) = (f_1(x), \ldots, f_m(x)) \), where \(f_i : A \to \mathbb{R}, i = 1, \ldots, m \), are the component functions of \(f \), then \(\lim_{x \to x_0} f(x) = b = (b_1, \ldots, b_m) \) if and only if \(\lim_{x \to x_0} f_i(x) = b_i \) for each \(i = 1, \ldots, m \).

Proof. We shall illustrate the technique of proof by proving assertions (i) and (ii). The proofs of the other assertions are only a bit more complicated and may be supplied by the reader. In each case, the \(\varepsilon \)-\(\delta \) formulation of Theorem 6 is probably the most convenient approach.

To prove rule (i), let \(\varepsilon > 0 \) be given; we must produce a number \(\delta > 0 \) such that the inequality \(\|cf(x) - cb\| < \varepsilon \) holds if \(0 < \|x - x_0\| < \delta \). If \(c = 0 \), any \(\delta \) will do, so we can suppose \(c \neq 0 \). Let \(\varepsilon' = \varepsilon/|c| \); from the definition of limit, there is a \(\delta \) with the property that \(0 < \|x - x_0\| < \delta \) implies \(\|f(x) - b\| < \varepsilon' = \varepsilon/|c| \). Thus \(0 < \|x - x_0\| < \delta \) implies \(\|cf(x) - cb\| = |c|\|f(x) - b\| < \varepsilon \), which proves rule (i).

To prove rule (ii), let \(\varepsilon > 0 \) be given again. Choose \(\delta_1 > 0 \) such that \(0 < \|x - x_0\| < \delta_1 \) implies \(\|f(x) - b_1\| < \varepsilon/2 \). Similarly, choose \(\delta_2 > 0 \) such that \(0 < \|x - x_0\| < \delta_2 \) implies \(\|g(x) - b_2\| < \varepsilon/2 \). Let \(\delta \) be the lesser of \(\delta_1 \) and \(\delta_2 \). Then \(0 < \|x - x_0\| < \delta \) implies

\[
\|f(x) + g(x) - b_1 - b_2\| \leq \|f(x) - b_1\| + \|g(x) - b_2\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

Thus, we have proved that \((f + g)(x) \to b_1 + b_2 \) as \(x \to x_0 \).

Example 1. Find the following limit if it exists:

\[
\lim_{(x,y) \to (0,0)} \left(\frac{x^3 - y^3}{x^2 + y^2} \right).
\]

Solution. Since

\[
0 \leq \left| \frac{x^3 - y^3}{x^2 + y^2} \right| \leq \frac{|x|x^2 + |y|y^2}{x^2 + y^2} \leq \frac{(|x| + |y|)(x^2 + y^2)}{x^2 + y^2} = |x| + |y|,
\]

we find that

\[
\lim_{(x,y) \to (0,0)} \frac{x^3 - y^3}{x^2 + y^2} = 0.
\]

Continuity. Now that we have the limit theorems available, we can use this to study continuity; we start with the basic definition of continuity of a function.

Definition. Let \(f : A \subset \mathbb{R}^n \to \mathbb{R}^m \) be a given function with domain \(A \). Let \(x_0 \in A \). We say \(f \) is **continuous at** \(x_0 \) if and only if

\[
\lim_{x \to x_0} f(x) = f(x_0).
\]

If we say that \(f \) is **continuous**, we shall mean that \(f \) is continuous at each point \(x_0 \) of \(A \).
2.7 Differentiation Theorems

From Theorem 6, we get the ε-δ criterion for continuity.

Theorem 7. A mapping $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $x_0 \in A$ if and only if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that
\[x \in A \text{ and } \|x - x_0\| < \delta \text{ implies } \|f(x) - f(x_0)\| < \varepsilon. \]

One of the properties of continuous functions stated without proof in §2.2 was the following:

Theorem 5. Continuity of Compositions. Let $f : A \subset \mathbb{R}^n \to \mathbb{R}^m$ and let $g : B \subset \mathbb{R}^m \to \mathbb{R}^p$. Suppose $f(A) \subset B$ so that $g \circ f$ is defined on A. If f is continuous at $x_0 \in A$ and g is continuous at $y_0 = f(x_0)$, then $g \circ f$ is continuous at x_0.

Proof. We use the ε-δ criterion for continuity. Thus, given $\varepsilon > 0$, we must find $\delta > 0$ such that for $x \in A$.
\[\|x - x_0\| < \delta \text{ implies } \|(g \circ f)(x) - (g \circ f)(x_0)\| < \varepsilon. \]

Since g is continuous at $f(x_0) = y_0 \in B$, there is a $\gamma > 0$ such that for $y \in B$,
\[\|y - y_0\| < \gamma \text{ implies } \|g(y) - g(f(x_0))\| < \varepsilon. \]

Since f is continuous $x_0 \in A$, there is, for this γ, a $\delta > 0$ such that for $x \in A$,
\[\|x - x_0\| < \delta \text{ implies } \|f(x) - f(x_0)\| < \gamma, \]
which in turn implies
\[\|g(f(x)) - g(f(x_0))\| < \varepsilon, \]
which is the desired conclusion.

Differentiability. The exposition in §2.3 was simplified by assuming, as part of the definition of $Df(x_0)$, that the partial derivatives of f existed. Our next objective is to show that this assumption can be omitted. Let us begin by redefining “differentiable.” Theorem 15 below will show that the new definition is equivalent to the old one.

Definition. Let U be an open set in \mathbb{R}^n and let $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a given function. We say that f is differentiable at $x_0 \in U$ if and only if there exists an $m \times n$ matrix T such that
\[\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - T(x - x_0)\|}{\|x - x_0\|} = 0. \]
Differentiation

We call T the derivative of f at x_0 and denote it by $Df(x_0)$. In matrix notation, $T(x - x_0)$ stands for

$$
\begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1n} \\
T_{21} & T_{22} & \cdots & T_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{m1} & T_{m2} & \cdots & T_{mn}
\end{bmatrix}
\begin{bmatrix}
x_1 - x_{01} \\
x_2 - x_{02} \\
\vdots \\
x_n - x_{0n}
\end{bmatrix},
$$

where $x = (x_1, \ldots, x_n)$, $x_0 = (x_{01}, \ldots, x_{0n})$, and where the matrix entries of T are denoted $[T_{ij}]$. Sometimes we write $T(y)$ as $T \cdot y$ or just Ty for the product of the matrix T with the column vector y.

Condition (1) can be rewritten as

$$
\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0) - Th\|}{\|h\|} = 0
$$

(2)
as we see by letting $h = x - x_0$. Written in terms of ε-δ notation, equation (2) says that for every $\varepsilon > 0$ there is a $\delta > 0$ such that $0 < \|h\| < \delta$ implies

$$
\frac{\|f(x_0 + h) - f(x_0) - Th\|}{\|h\|} < \varepsilon,
$$
or, in other words,

$$
\|f(x_0 + h) - f(x_0) - Th\| < \varepsilon \|h\|.
$$

Notice that because U is open, as long as δ is small enough, $\|h\| < \delta$ implies $x_0 + h \in U$.

Our first task is to show that the matrix T is necessarily the matrix of partial derivatives, and hence that this abstract definition agrees with the definition of differentiability given in §2.3.

Theorem 15. Suppose $f : U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x_0 \in \mathbb{R}^n$. Then all the partial derivatives of f exist at the point x_0 and the $m \times n$ matrix T has entries given by

$$
[T_{ij}] = \left[\frac{\partial f_i}{\partial x_j} \right],
$$

that is,

$$
T = Df(x_0) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{bmatrix},
$$

where $\frac{\partial f_i}{\partial x_j}$ is evaluated at x_0. In particular, this implies that T is uniquely determined; that is, there is no other matrix satisfying condition (1).
Proof. By Theorem 3(v), condition (2) is the same as
\[\lim_{h \to 0} \frac{|f_i(x_0 + h) - f_i(x_0) - (Th)_i|}{\|h\|} = 0, \quad 1 \leq i \leq m. \]
Here \((Th)_i\) stands for the \(i\)th component of the column vector \(Th\). Now let \(h = ae_j = (0, \ldots, a, \ldots, 0)\), which has the number \(a\) in the \(j\)th slot and zeros elsewhere. We get
\[\lim_{a \to 0} \frac{|f_i(x_0 + ae_j) - f_i(x_0) - a(Te_j)_i|}{|a|} = 0, \]
or, in other words,
\[\lim_{a \to 0} \left| \frac{f_i(x_0 + ae_j) - f_i(x_0)}{a} - (Te_j)_i \right| = 0, \]
so that
\[\lim_{a \to 0} \frac{f_i(x_0 + ae_j) - f_i(x_0)}{a} = (Te_j)_i. \]
But this limit is nothing more than the partial derivative \(\partial f_i/\partial x_j\) evaluated at the point \(x_0\). Thus, we have proved that \(\partial f_i/\partial x_j\) exists and equals \((Te_j)_i\). But \((Te_j)_i = T_{ij}\) (see §1.5 of the main text), and so the theorem follows.

\section*{Differentiability and Continuity.}

Our next task is to show that differentiability implies continuity.

\textbf{Theorem 8.} Let \(f : U \subset \mathbb{R}^n \to \mathbb{R}^m\) be differentiable at \(x_0\). Then \(f\) is continuous at \(x_0\), and furthermore, \(\|f(x) - f(x_0)\| < M_1\|x - x_0\|\) for some constant \(M_1\) and \(x\) near \(x_0, x \neq x_0\).

\textbf{Proof.} We shall use the result of Exercise 2 at the end of this section, namely that,
\[\|Df(x_0) \cdot h\| \leq M\|h\|, \]
where \(M\) is the square root of the sum of the squares of the matrix elements in \(Df(x_0)\).

Choose \(\varepsilon = 1\). Then by the definition of the derivative (see formula (2)) there is a \(\delta_1 > 0\) such that \(0 < \|h\| < \delta_1\) implies
\[\|f(x_0 + h) - f(x_0) - Df(x_0) \cdot h\| < \varepsilon \|h\| = \|h\|. \]
If \(\|h\| < \delta_1\), then using the triangle inequality,
\[\|f(x_0 + h) - f(x_0)\| = \|f(x_0 + h) - f(x_0) - Df(x_0) \cdot h + Df(x_0) \cdot h\| \leq \|f(x_0 + h) - f(x_0) - Df(x_0) \cdot h\| + \|Df(x_0) \cdot h\| < \|h\| + M\|h\| = (1 + M)\|h\|. \]
Setting \(x = x_0 + h \) and \(M_1 = 1 + M \), we get the second assertion of the theorem.

Now let \(\varepsilon' \) be any positive number, and let \(\delta \) be the smaller of the two positive numbers \(\delta_1 \) and \(\varepsilon'/(1 + M) \). Then \(\|h\| < \delta \) implies

\[
\|f(x_0 + h) - f(x_0)\| < (1 + M) \frac{\varepsilon'}{1 + M} = \varepsilon',
\]

which proves that (see Exercise 15 at the end of this section)

\[
\lim_{x \to x_0} f(x) = \lim_{h \to 0} f(x_0 + h) = f(x_0),
\]

so that \(f \) is continuous at \(x_0 \).

\[\Box\]

Criterion for Differentiability. We asserted in §2.3 that an important criterion for differentiability is that the partial derivatives exist and are continuous. We now are able to prove this.

Theorem 9. Let \(f : U \subset \mathbb{R}^n \to \mathbb{R}^m \). Suppose the partial derivatives \(\partial f_i / \partial x_j \) of \(f \) all exist and are continuous in some neighborhood of a point \(x \in U \). Then \(f \) is differentiable at \(x \).

Proof. In this proof we are going to use the mean value theorem from one-variable calculus—see §2.5 of the main text for the statement. To simplify the exposition, we shall only consider the case \(m = 1 \), that is, \(f : U \subset \mathbb{R}^n \to \mathbb{R} \), leaving the general case to the reader (this is readily supplied knowing the techniques from the proof of Theorem 15, above).

According to the definition of the derivative, our objective is to show that

\[
\lim_{h \to 0} \frac{f(x + h) - f(x) - \sum_{i=1}^{n} \left[\frac{\partial f}{\partial x_i}(x) \right] h_i}{\|h\|} = 0.
\]

Write

\[
f(x + h_1, \ldots, x_n + h_n) - f(x_1, \ldots, x_n) \\
= f(x_1 + h_1, \ldots, x_n + h_n) - f(x_1, x_2 + h_2, \ldots, x_n + h_n) \\
+ f(x_1, x_2 + h_2, \ldots, x_n + h_n) - f(x_1, x_2, x_3 + h_3, \ldots, x_n + h) + \ldots \\
+ f(x_1, \ldots, x_{n-1} + h_{n-1}, x_n + h_n) - f(x_1, \ldots, x_{n-1}, x_n + h_n) \\
+ f(x_1, \ldots, x_{n-1}, x_n + h_n) - f(x_1, \ldots, x_n).
\]

This is called a **telescoping sum**, since each term cancels with the succeeding or preceding one, except the first and the last. By the mean value theorem, this expression may be written as

\[
f(x + h) - f(x) = \left[\frac{\partial f}{\partial x_1}(y_1) \right] h_1 + \left[\frac{\partial f}{\partial x_2}(y_2) \right] h_2 + \ldots + \left[\frac{\partial f}{\partial x_n}(y_2) \right] h_n,
\]
where \(y_1 = (c_1, x_2 + h_2, \ldots, x_n + h_n) \) with \(c_1 \) lying between \(x_1 \) and \(x_1 + h_1; y_2 = (x_1, c_2, x_3 + h_3, \ldots, x_n + h_n) \) with \(c_2 \) lying between \(x_2 \) and \(x_2 + h_2; \) and \(y_n = (x_1, \ldots, x_{n-1}, c_n) \) where \(c_n \) lies between \(x_n \) and \(x_n + h_n. \) Thus, we can write

\[
\left| f(x + h) - f(x) - \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}(x) \right) h_i \right| = \left| \left(\frac{\partial f}{\partial x_1}(y_1) - \frac{\partial f}{\partial x_1}(x) \right) h_1 + \cdots + \left(\frac{\partial f}{\partial x_n}(y_n) - \frac{\partial f}{\partial x_n}(x) \right) h_n \right|.
\]

By the triangle inequality, this expression is less than or equal to

\[
\left| \frac{\partial f}{\partial x_1}(y_1) - \frac{\partial f}{\partial x_1}(x) \right| |h_1| + \cdots + \left| \frac{\partial f}{\partial x_n}(y_n) - \frac{\partial f}{\partial x_n}(x) \right| |h_n|
\leq \left\{ \left| \frac{\partial f}{\partial x_1}(y_1) - \frac{\partial f}{\partial x_1}(x) \right| + \cdots + \left| \frac{\partial f}{\partial x_n}(y_n) - \frac{\partial f}{\partial x_n}(x) \right| \right\} \|h\|.
\]

since \(|h_i| \leq \|h\| \) for all \(i. \) Thus, we have proved that

\[
\frac{|f(x + h) - f(x) - \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}(x) \right) h_i|}{\|h\|} \leq \left| \frac{\partial f}{\partial x_1}(y_1) - \frac{\partial f}{\partial x_1}(x) \right| + \cdots + \left| \frac{\partial f}{\partial x_n}(y_n) - \frac{\partial f}{\partial x_n}(x) \right|.
\]

But since the partial derivatives are continuous by assumption, the right side approaches 0 as \(h \to 0 \) so that the left side approaches 0 as well. ■

Chain Rule. As explained in §2.5, the Chain Rule is right up there with the most important results in differential calculus. We are now in a position to give a careful proof.

Theorem 11: Chain Rule. Let \(U \subset \mathbb{R}^n \) and \(V \subset \mathbb{R}^m \) be open. Let \(g : U \subset \mathbb{R}^n \to \mathbb{R}^m \) and \(f : V \subset \mathbb{R}^m \to \mathbb{R}^p \) be given functions such that \(g \) maps \(U \) into \(V, \) so that \(f \circ g \) is defined. Suppose \(g \) is differentiable at \(x_0 \) and \(f \) is differentiable at \(y_0 = g(x_0). \) Then \(f \circ g \) is differentiable at \(x_0 \) and

\[
D(f \circ g)(x_0) = Df(y_0)Dg(x_0).
\]

Proof. According to the definition of the derivative, we must verify that

\[
\lim_{x \to x_0} \frac{\|f(g(x)) - f(g(x_0)) - Df(y_0)Dg(x_0) \cdot (x - x_0)\|}{\|x - x_0\|} = 0.
\]
2 Differentiation

First rewrite the numerator and apply the triangle inequality as follows:

\[
\begin{align*}
\|f(g(x)) - f(g(x_0)) - Df(y_0) \cdot (g(x) - g(x_0)) + Df(y_0) \cdot [g(x) - g(x_0) - Dg(x_0) \cdot (x - x_0)]
\leq & \|f(g(x)) - f(g(x_0)) - Df(y_0) \cdot (g(x) - g(x_0)) + Df(y_0) \cdot [g(x) - g(x_0) - Dg(x_0) \cdot (x - x_0)]
\leq & |Df(y_0)| |g(x) - g(x_0)| (|x - x_0|).
\end{align*}
\]

As in the proof of Theorem 8, \(\|Df(y_0)\| \leq M\|h\|\) for some constant \(M\). Thus the right-hand side of inequality (3) is less than or equal to

\[
\begin{align*}
\|f(g(x)) - f(g(x_0)) - Df(y_0) \cdot (g(x) - g(x_0)) + M\|g(x) - g(x_0) - Dg(x_0) \cdot (x - x_0)|.
\end{align*}
\]

Since \(g\) is differentiable at \(x_0\), given \(\varepsilon > 0\), there is a \(\delta_1 > 0\) such that \(0 < \|x - x_0\| < \delta_1\) implies

\[
\begin{align*}
\frac{|g(x) - g(x_0) - Dg(x_0) \cdot (x - x_0)|}{\|x - x_0\|} < \frac{\varepsilon}{2M}.
\end{align*}
\]

This makes the second term in expression (4) less than \(\varepsilon\|x - x_0\|/2\).

Let us turn to the first term in expression (4). By Theorem 8,

\[
\begin{align*}
\|g(x) - g(x_0)\| < M_1\|x - x_0\|
\end{align*}
\]

for a constant \(M_1\) if \(x\) is near \(x_0\), say \(0 < \|x - x_0\| < \delta_2\). Now choose \(\delta_3\) such that \(0 < \|y - y_0\| < \delta_2\) implies

\[
\begin{align*}
\|f(y) - f(y_0) - Df(y_0) \cdot (y - y_0)| < \frac{\varepsilon\|y - y_0\|}{2M_1}.
\end{align*}
\]

Since \(y = g(x)\) and \(y_0 = g(x_0)\), \(\|y - y_0\| < \delta_3\) if \(\|x - x_0\| < \delta_3/M_1\) and \(\|x - x_0\| < \delta_2\), and so

\[
\begin{align*}
\|f(g(x)) - f(g(x_0)) - Df(y_0) \cdot (g(x) - g(x_0))\| < \frac{\varepsilon\|g(x) - g(x_0)\|}{2M_1} < \frac{\varepsilon\|x - x_0\|}{2}.
\end{align*}
\]

Thus if \(\delta = \min(\delta_1, \delta_2, \delta_3/M_1)\), expression (4) is less than

\[
\begin{align*}
\frac{\varepsilon\|x - x_0\|}{2} + \frac{\varepsilon\|x - x_0\|}{2} = \varepsilon\|x - x_0\|,
\end{align*}
\]

and so

\[
\begin{align*}
\frac{\|f(g(x)) - f(g(x_0)) - Df(y_0)Dg(x_0)(x - x_0)\|}{\|x - x_0\|} < \varepsilon
\end{align*}
\]

for \(0 < \|x - x_0\| < \delta\). This proves the theorem. ■
A Crinkled Function. The student has already met with a number of examples illustrating the above theorems. Let us consider one more of a more technical nature.

Example 2. Let

\[
f(x, y) = \begin{cases}
 \frac{xy}{\sqrt{x^2 + y^2}} & (x, y) \neq (0, 0) \\
 0 & (x, y) = (0, 0).
\end{cases}
\]

Is \(f \) differentiable at \((0, 0)\)? (See Figure 2.7.1.)

Solution. We note that

\[
\frac{\partial f}{\partial x}(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x}
= \lim_{x \to 0} \frac{(x \cdot 0)/\sqrt{x^2 + 0} - 0}{x} = \lim_{x \to 0} \frac{0 - 0}{x} = 0
\]

and similarly, \((\partial f/\partial y)(0, 0) = 0 \). Thus the partial derivatives exist at \((0, 0)\).

Also, if \((x, y) \neq (0, 0)\), then

\[
\frac{\partial f}{\partial x} = \frac{y\sqrt{x^2 + y^2} - 2x(xy)/2\sqrt{x^2 + y^2}}{x^2 + y^2} = \frac{y}{\sqrt{x^2 + y^2}} - \frac{x^2y}{(x^2 + y^2)^{3/2}},
\]

which does not have a limit as \((x, y) \to (0, 0)\). Different limits are obtained for different paths of approach, as can be seen by letting \(x = My \). Thus the partial derivatives are not continuous at \((0, 0)\), and so we cannot apply Theorem 9.

Figure 2.7.1. This function is not differentiable at \((0, 0)\), because it is “crinkled.”
12 2 Differentiation

We might now try to show that \(f \) is not differentiable (\(f \) is continuous, however). If \(Df(0,0) \) existed, then by Theorem 15 it would have to be the zero matrix, since \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) are zero at \((0,0)\). Thus, by definition of differentiability, for any \(\varepsilon > 0 \) there would be a \(\delta > 0 \) such that \(0 < \|(h_1,h_2)\| < \delta \) implies

\[
\frac{|f(h_1,h_2) - f(0,0)|}{\|(h_1,h_2)\|} < \varepsilon
\]

that is, \(|f(h_1,h_2)| < \varepsilon \|(h_1,h_2)\| \), or \(|h_1h_2| < \varepsilon(h_1^2 + h_2^2) \). But if we choose \(h_1 = h_2 \), this reads \(1/2 < \varepsilon \), which is untrue if we choose \(\varepsilon \leq 1/2 \). Hence, we conclude that \(f \) is not differentiable at \((0,0)\).

\[\blacksquare\]

Exercises 2

1. Let \(f(x,y,z) = (e^x, \cos y, \sin z) \). Compute \(Df \). In general, when will \(Df \) be a diagonal matrix?

2. (a) Let \(A : \mathbb{R}^n \to \mathbb{R}^m \) be a linear transformation with matrix \(\{A_{ij}\} \) so that \(Ax \) has components \(y_i = \sum_j A_{ij}x_j \). Let

\[
M = \left(\sum_{ij} A_{ij}^2 \right)^{1/2}.
\]

Use the Cauchy-Schwarz inequality to prove that \(\|Ax\| \leq M\|x\| \).

(b) Use the inequality derived in part (a) to show that a linear transformation \(T : \mathbb{R}^n \to \mathbb{R}^m \) with matrix \([T_{ij}] \) is continuous.

(c) Let \(A : \mathbb{R}^n \to \mathbb{R}^m \) be a linear transformation. If

\[
\lim_{x \to 0} \frac{Ax}{\|x\|} = 0,
\]

show that \(A = 0 \).

3. Let \(f : A \to B \) and \(g : B \to C \) be maps between open subsets of Euclidean space, and let \(x_0 \) be in \(A \) or be a boundary point of \(A \) and \(y_0 \) be in \(B \) or be a boundary point of \(B \).

(a) If \(\lim_{x \to x_0} f(x) = y_0 \) and \(\lim_{y \to y_0} g(y) = w \), show that, in general, \(\lim_{x \to x_0} g(f(x)) \) need not equal \(w \).

(b) If \(y_0 \in B \), and \(w = g(y_0) \), show that \(\lim_{x \to x_0} g(f(x)) = w \).

\[\text{Answers, and hints for odd-numbered exercises are found at the end of this supplement, as well as selected complete solutions.}\]
4. A function \(f : A \subset \mathbb{R}^n \rightarrow \mathbb{R}^m \) is said to be **uniformly continuous** if for every \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that for all points \(p \) and \(q \in A \), the condition \(\|p - q\| < \delta \) implies \(\|f(p) - f(q)\| < \varepsilon \). (Note that a uniformly continuous function is continuous; describe explicitly the extra property that a uniformly continuous function has.)

(a) Prove that a linear map \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is uniformly continuous. [HINT: Use Exercise 2.]

(b) Prove that \(x \mapsto 1/x^2 \) on \((0, 1]\) is continuous, but not uniformly continuous.

5. Let \(A = [A_{ij}] \) be a symmetric \(n \times n \) matrix (that is, \(A_{ij} = A_{ji} \)) and define \(f(x) = x \cdot Ax \), so \(f : \mathbb{R}^n \rightarrow \mathbb{R} \). Show that \(\nabla f(x) \) is the vector \(2Ax \).

6. The following function is graphed in Figure 2.7.2:

\[
f(x, y) = \begin{cases}
\frac{2xy^2}{\sqrt{x^2 + y^4}} & (x, y) \neq (0, 0) \\
0 & (x, y) = (0, 0) \end{cases}
\]

![Figure 2.7.2. Graph of \(z = 2xy^2/(x^2 + y^4) \).](image)

Show that \(\partial f/\partial x \) and \(\partial f/\partial y \) exist everywhere; in fact all directional derivatives exist. But show that \(f \) is not continuous at \((0, 0)\). Is \(f \) differentiable?

7. Let \(f(x, y) = g(x) + h(y) \), and suppose \(g \) is differentiable at \(x_0 \) and \(h \) is differentiable at \(y_0 \). Prove from the definition that \(f \) is differentiable at \((x_0, y_0)\).
8. Use the Cauchy-Schwarz inequality to prove the following: for any vector \(v \in \mathbb{R}^n \),
\[
\lim_{x \to x_0} v \cdot x = v \cdot x_0.
\]

9. Prove that if \(\lim_{x \to x_0} f(x) = b \) for \(f : A \subset \mathbb{R}^n \to \mathbb{R} \), then
\[
\lim_{x \to x_0} [f(x)]^2 = b^2 \quad \text{and} \quad \lim_{x \to x_0} \sqrt{|f(x)|} = \sqrt{|b|}.
\]
[You may wish to use Exercise 3(b).]

10. Show that in Theorem 9 with \(m = 1 \), it is enough to assume that \(n - 1 \) partial derivatives are continuous and merely that the other one exists. Does this agree with what you expect when \(n = 1 \)?

11. Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by
\[
f(x, y) = \begin{cases}
 \frac{xy}{(x^2 + y^2)^{1/2}} & (x, y) \neq (0, 0) \\
 0 & (x, y) = (0, 0)
\end{cases}
\]
Show that \(f \) is continuous.

12. (a) Does \(\lim_{(x,y) \to (0,0)} \frac{x}{x^2 + y^2} \) exist?
(b) Does \(\lim_{(x,y) \to (0,0)} \frac{x^3}{x^2 + y^2} \) exist?

13. Find \(\lim_{(x,y) \to (0,0)} \frac{xy^2}{x^2 + y^2} \).

14. Prove that \(s : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x + y \) is continuous.

15. Using the definition of continuity, prove that \(f \) is continuous at \(x \) if and only if
\[
\lim_{n \to 0} f(x + h) = f(x).
\]

16. (a) A sequence \(x_n \) of points in \(\mathbb{R}^m \) is said to converge to \(x \), written \(x_n \to x \) as \(n \to \infty \), if for any \(\varepsilon > 0 \) there is an \(N \) such that \(n \geq N \) implies \(||x - x_0|| < \varepsilon \). Show that \(y \) is a boundary point of an open set \(A \) if and only if \(y \) is not in \(A \) and there is a sequence of distinct points of \(A \) converging to \(y \).
(b) Let \(f : A \subset \mathbb{R}^n \to \mathbb{R}^m \) and \(y \) be in \(A \) or be a boundary point of \(A \). Prove that \(\lim_{x \to y} f(x) = b \) if and only if \(f(x_n) \to b \) for every sequence \(x_n \) of points in \(A \) with \(x_n \to y \).
(c) If \(U \subset \mathbb{R}^m \) is open, show that \(f : U \to \mathbb{R}^p \) is continuous if and only if \(x_n \to x \in U \) implies \(f(x_n) \to f(x) \).
17. If \(f(x) = g(x) \) for all \(x \neq A \) and if \(\lim_{x \to A} f(x) = b \), then show that \(\lim_{x \to A} g(x) = b \), as well.

18. Let \(A \subset \mathbb{R}^n \) and let \(x_0 \) be a boundary point of \(A \). Let \(f : A \to \mathbb{R} \) and \(g : A \to \mathbb{R} \) be functions defined on \(A \) such that \(\lim_{x \to x_0} f(x) \) and \(\lim_{x \to x_0} g(x) \) exist, and assume that for all \(x \) in some deleted neighborhood of \(x_0 \), \(f(x) \leq g(x) \). (A deleted neighborhood of \(x_0 \) is any neighborhood of \(x_0 \), less \(x_0 \) itself.)

(a) Prove that \(\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x) \). [HINT: Consider the function \(\phi(x) = g(x) - f(x) \); prove that \(\lim_{x \to x_0} \phi(x) \geq 0 \), and then use the fact that the limit of the sum of two functions is the sum of their limits.]

(b) If \(f(x) < g(x) \), do we necessarily have strict inequality of the limits?

19. Given \(f : A \subset \mathbb{R}^n \to \mathbb{R}^m \), we say that “\(f \) is \(o(x) \) as \(x \to 0 \)” if \(\lim_{x \to 0} f(x)/\|x\| = 0 \).

(a) If \(f_1 \) and \(f_2 \) are \(o(x) \) as \(x \to 0 \), prove that \(f_1 + f_2 \) is also \(o(x) \) as \(x \to 0 \).

(b) Let \(g : A \to \mathbb{R} \) be a function with the property that there is a number \(c > 0 \) such that \(|g(x)| \leq c \) for all \(x \) in \(A \) (the function \(g \) is said to be \emph{bounded}). If \(f \) is \(o(x) \) as \(x \to 0 \), prove that \(gf \) is also \(o(x) \) as \(x \to 0 \) [where \((gf)(x) = g(x)f(x) \)].

(c) Show that \(f(x) = x^2 \) is \(o(x) \) as \(x \to 0 \). Is \(g(x) = x \) also \(o(x) \) as \(x \to 0 \)?
Supplement 3.4A
Second Derivative Test: Constrained Extrema

In this supplement, we prove Theorem 10 in §3.4. We begin by recalling the statement from the main text.

Theorem 10. Let \(f : U \subset \mathbb{R}^2 \to \mathbb{R} \) and \(g : U \subset \mathbb{R}^2 \to \mathbb{R} \) be smooth (at least \(C^2 \)) functions. Let \(\mathbf{v}_0 \in U, \ g(\mathbf{v}_0) = c \), and let \(S \) be the level curve for \(g \) with value \(c \). Assume that \(\nabla g(\mathbf{v}_0) \neq \mathbf{0} \) and that there is a real number \(\lambda \) such that \(\nabla f(\mathbf{v}_0) = \lambda \nabla g(\mathbf{v}_0) \). Form the auxiliary function \(h = f - \lambda g \) and
Higher Derivatives and Extrema

the bordered Hessian determinant

$$|\bar{H}| = \begin{vmatrix} 0 & -\frac{\partial g}{\partial x} & -\frac{\partial g}{\partial y} \\ -\frac{\partial g}{\partial x} & \frac{\partial^2 h}{\partial x^2} & \frac{\partial^2 h}{\partial x \partial y} \\ -\frac{\partial g}{\partial y} & \frac{\partial^2 h}{\partial x \partial y} & \frac{\partial^2 h}{\partial y^2} \end{vmatrix}$$ evaluated at v_0.

(i) If $|\bar{H}| > 0$, then v_0 is a local maximum point for $f|S$.

(ii) If $|\bar{H}| < 0$, then v_0 is a local minimum point for $f|S$.

(iii) If $|\bar{H}| = 0$, the test is inconclusive and v_0 may be a minimum, a maximum, or neither.

The proof proceeds as follows. According to the remarks following the Lagrange multiplier theorem, the constrained extrema of f are found by looking at the critical points of the auxiliary function

$$h(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c).$$

Suppose (x_0, y_0, λ) is such a point and let $v_0 = (x_0, y_0)$. That is,

$$\frac{\partial f}{\partial x}|_{v_0} = \lambda \frac{\partial g}{\partial x}|_{v_0}, \quad \frac{\partial f}{\partial y}|_{v_0} = \lambda \frac{\partial g}{\partial y}|_{v_0}, \quad \text{and} \quad g(x_0, y_0) = c.$$

In a sense this is a one-variable problem. If the function g is at all reasonable, then the set S defined by $g(x, y) = c$ is a curve and we are interested in how f varies as we move along this curve. If we can solve the equation $g(x, y) = c$ for one variable in terms of the other, then we can make this explicit and use the one-variable second-derivative test. If $\frac{\partial g}{\partial y}|_{v_0} \neq 0$, then the curve S is not vertical at v_0 and it is reasonable that we can solve for y as a function of x in a neighborhood of x_0. We will, in fact, prove this in §3.5 on the implicit function theorem. (If $\frac{\partial g}{\partial x}|_{v_0} \neq 0$, we can similarly solve for x as a function of y.)

Suppose S is the graph of $y = \phi(x)$. Then $f|S$ can be written as a function of one variable, $f(x, y) = f(x, \phi(x))$. The chain rule gives

$$\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{d\phi}{dx}$$

and

$$\frac{d^2 f}{dx^2} = \frac{\partial^2 f}{\partial x^2} + 2 \frac{\partial^2 f}{\partial x \partial y} \frac{d\phi}{dx} + \frac{\partial^2 f}{\partial y^2} \left(\frac{d\phi}{dx} \right)^2 + \frac{\partial f}{\partial y} \frac{d^2 \phi}{dx^2}.$$ (1)
The relation \(g(x, \phi(x)) = c \) can be used to find \(d\phi/dx \) and \(d^2\phi/dx^2 \). Differentiating both sides of \(g(x, \phi(x)) = c \) with respect to \(x \) gives

\[
\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} \frac{d\phi}{dx} = 0
\]

and

\[
\frac{\partial^2 g}{\partial x^2} + 2 \frac{\partial^2 g}{\partial x \partial y} \frac{d\phi}{dx} + \frac{\partial^2 g}{\partial y^2} \left(\frac{d\phi}{dx} \right)^2 + \frac{\partial g}{\partial y} \frac{d^2\phi}{dx^2} = 0,
\]

so that

\[
\frac{d\phi}{dx} = -\frac{\partial g/\partial x}{\partial g/\partial y}
\]

and

\[
\frac{d^2\phi}{dx^2} = -\frac{1}{\partial g/\partial y} \left[\frac{\partial^2 g}{\partial x^2} - 2 \frac{\partial^2 g}{\partial x \partial y} \frac{\partial g}{\partial y} + \frac{\partial^2 g}{\partial y^2} \left(\frac{\partial g/\partial x}{\partial g/\partial y} \right)^2 \right].
\]

Substituting equation (7) into equation (6) gives

\[
\frac{df}{dx} = \frac{\partial f}{\partial x} - \frac{\partial f/\partial y}{\partial g/\partial y} \frac{\partial g}{\partial x}
\]

and

\[
\frac{d^2 f}{dx^2} = \frac{1}{(\partial g/\partial y)^2} \left\{ \frac{d^2 f}{dx^2} - \frac{\partial f/\partial y}{\partial g/\partial y} \frac{\partial^2 g}{\partial x \partial y} + \left(\frac{\partial g/\partial x}{\partial g/\partial y} \right)^2 \right\}.
\]

At \(v_0 \), we know that \(\partial f/\partial y = \lambda \partial g/\partial y \) and \(\partial f/\partial x = \lambda \partial g/\partial x \), and so equation (3) becomes

\[
\left. \frac{df}{dx} \right|_{x_0} = \left. \frac{\partial f}{\partial x} \right|_{x_0} - \lambda \left. \frac{\partial g}{\partial x} \right|_{x_0} = 0
\]

and

\[
\left. \frac{d^2 f}{dx^2} \right|_{x_0} = \frac{1}{(\partial g/\partial y)^2} \left[\frac{\partial^2 h}{\partial x^2} \left(\frac{\partial g}{\partial y} \right)^2 - 2 \frac{\partial^2 h}{\partial x \partial y} \frac{\partial g}{\partial y} \frac{\partial g}{\partial x} + \frac{\partial^2 h}{\partial y^2} \left(\frac{\partial g}{\partial x} \right)^2 \right]
\]

\[
= -\frac{1}{(\partial g/\partial y)^2} \begin{vmatrix} 0 & -\frac{\partial g}{\partial x} & -\frac{\partial g}{\partial y} \\ -\frac{\partial g}{\partial x} & \frac{\partial^2 h}{\partial x^2} & \frac{\partial^2 h}{\partial x \partial y} \\ -\frac{\partial g}{\partial y} & \frac{\partial^2 h}{\partial x \partial y} & \frac{\partial^2 h}{\partial y^2} \end{vmatrix}
\]
where the quantities are evaluated at x_0 and h is the auxiliary function introduced above. This 3×3 determinant is, as in the statement of Theorem 10, called a **bordered Hessian**, and its sign is **opposite** that of $d^2 f/dx^2$. Therefore, if it is negative, we must be at a local minimum. If it is positive, we are at a local maximum; and if it is zero, the test is inconclusive.

Exercises.

1. Take the special case of the theorem in which $g(x, y) = y$, so that the level curve $g(x, y) = c$ with $c = 0$ is the x-axis. Does Theorem 10 reduce to a theorem you know from one-variable Calculus?

2. Show that the bordered Hessian of $f(x_1, \ldots, x_n)$ subject to the single constraint $g(x_1, \ldots, x_n) = c$ is the Hessian of the function

$$f(x_1, \ldots, x_n) - \lambda g(x_1, \ldots, x_n)$$

of the $n + 1$ variables $\lambda, x_1, \ldots, x_n$ (evaluated at the critical point). Can you use this observation to give another proof of the constrained second-derivative test using the unconstrained one? **HINT:** If λ_0 denotes the value of λ determined by the Lagrange multiplier theorem, consider the function

$$F(x_1, \ldots, x_n, \lambda) = f(x_1, \ldots, x_n) - \lambda g(x_1, \ldots, x_n) \pm (\lambda - \lambda_0)^2.$$
Supplement 3.4B
Proof of the Implicit Function Theorem

We begin by recalling the statement.

Theorem 11. Special Implicit Function Theorem. Suppose that the function $F : \mathbb{R}^{n+1} \to \mathbb{R}$ has continuous partial derivatives. Denoting points in \mathbb{R}^{n+1} by (x, z), where $x \in \mathbb{R}^n$ and $z \in \mathbb{R}$, assume that (x_0, z_0) satisfies

$$F(x_0, z_0) = 0 \text{ and } \frac{\partial F}{\partial z}(x_0, z_0) \neq 0.$$

Then there is a ball U containing x_0 in \mathbb{R}^n and a neighborhood V of z_0 in \mathbb{R} such that there is a unique function $z = g(x)$ defined for x in U and z in V that satisfies $F(x, g(x)) = 0$. Moreover, if x in U and z in V satisfy $F(x, z) = 0$, then $z = g(x)$. Finally, $z = g(x)$ is continuously differentiable, with the derivative given by

$$Dg(x) = -\frac{1}{\frac{\partial F}{\partial z}(x, z)} D_x F(x, z)_{|z=g(x)}$$

where $D_x F$ denotes the derivative matrix of F with respect to the variable x, that is,

$$D_x F = \left[\frac{\partial F}{\partial x_1}, \ldots, \frac{\partial F}{\partial x_n} \right];$$

in other words,

$$\frac{\partial g}{\partial x_i} = -\frac{\partial F/\partial x_i}{\partial F/\partial z}, \quad i = 1, \ldots, n. \quad (1)$$

We shall prove the case $n = 2$, so that $F : \mathbb{R}^3 \to \mathbb{R}$. The case for general n is done in a similar manner. We write $x = (x, y)$ and $x_0 = (x_0, y_0)$. Since $(\partial F/\partial z)(x_0, y_0, z_0) \neq 0$, it is either positive or negative. Suppose for definiteness that it is positive. By continuity, we can find numbers $a > 0$ and $b > 0$ such that if $|x - x_0| < a$ and $|z - z_0| < a$, then $(\partial F/\partial z)(x, z) > b$. We can also assume that the other partial derivatives are bounded by a number M in this region, that is, $|(\partial F/\partial x)(x, z)| \leq M$ and $|(\partial F/\partial y)(x, z)| \leq M$, which also follows from continuity. Write $F(x, z)$ as follows

$$F(x, z) = F(x, z) - F(x_0, z_0) = [F(x, z) - F(x_0, z)] + [F(x_0, z) - F(x_0, z_0)]. \quad (2)$$

Consider the function

$$h(t) = F(tx + (1 - t)x_0, z)$$
for fixed x and z. By the mean value theorem, there is a number θ between 0 and 1 such that

$$h(1) - h(0) = h'(\theta)(1 - 0) = h'(\theta),$$

that is, θ is such that

$$F(x, z) - F(x_0, z) = [D_x F(\theta x + (1 - \theta)x_0, z)](x - x_0).$$

Substitution of this formula into equation (2) along with a similar formula for the second term of that equation gives

$$F(x, z) = [D_x F(\theta x + (1 - \theta)x_0, z)](x - x_0) + \left[\frac{\partial F}{\partial z}(x_0, \phi z + (1 - \phi)z_0)\right](z - z_0). \tag{3}$$

where ϕ is between 0 and 1. Let a_0 satisfy $0 < a_0 < a$ and choose $\delta > 0$ such that $\delta < a_0$ and $\delta < ba_0/2M$. If $|x - x_0| < \delta$ then both $|x - x_0|$ and $|y - y_0|$ are less than δ, so that the absolute value of each of the two terms in

$$[D_x F(\theta x + (1 - \theta)x_0, z)](x - x_0)$$

is less than $M\delta < M(ba_0/2M) = ba_0/2$. Thus, $|x - x_0| < \delta$ implies

$$||[D_x F(\theta x + (1 - \theta)x_0, z)](x - x_0)|| < ba_0.$$

Therefore, from equation (3) and the choice of $b, ||x - x_0|| < \delta$ implies that

$$F(x, z_0 + a_0) > 0 \text{ and } F(x, z_0 - a_0) < 0.$$

[The inequalities are reversed if $(\partial F/\partial z)(x_0, z_0) < 0$.] Thus, by the intermediate value theorem applied to $F(x, z)$ as a function of z for each x, there is a z between $z_0 - a_0$ and $z_0 + a_0$ such that $F(x, z) = 0$. This z is unique, since, by elementary calculus, a function with a positive derivative is strictly increasing and thus can have no more than one zero.

Let U be the open ball of radius δ and center x_0 in \mathbb{R}^2 and let V be the open interval on \mathbb{R} from $z_0 - a_0$ to $z_0 + a_0$. We have proved that if x is confined to U, there is a unique z in V such that $F(x, z) = 0$. This defines the function $z = g(x) = g(x, y)$ required by the theorem. We leave it to the reader to prove from this construction that $z = g(x, y)$ is a continuous function.

It remains to establish the continuous differentiability of $z = g(x)$. From equation (3), and since $F(x, z) = 0$ and $z_0 = g(x_0)$, we have

$$g(x) - g(x_0) = \left[\frac{\partial F}{\partial z}(x_0, \phi z + (1 - \phi)z_0)\right].$$
If we let \(x = (x_0 + h, y_0) \) then this equation becomes

\[
\frac{g(x_0 + h, y_0) - g(x_0, y_0)}{h} = -\frac{\partial F}{\partial x}(\theta x + (1 - \theta)x_0, z) - \frac{\partial F}{\partial z}(x_0, \phi z + (1 - \phi)z_0).
\]

As \(h \to 0 \), it follows that \(x \to x_0 \) and \(z \to z_0 \), and so we get

\[
\frac{\partial g}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{g(x_0 + h, y_0) - g(x_0, y_0)}{h} = -\frac{\partial F}{\partial x}(x_0, z) - \frac{\partial F}{\partial z}(x_0, z).
\]

The formula

\[
\frac{\partial g}{\partial y}(x_0, y_0) = -\frac{\partial F}{\partial y}(x_0, z) - \frac{\partial F}{\partial z}(x_0, z)
\]

is proved in the same way. This derivation holds at any point \((x, y)\) in \(U \) by the same argument, and so we have proved formula (1). Since the right-hand side of formula (1) is continuous, we have proved the theorem.
3 Higher Derivatives and Extrema
4

Vector Valued Functions

I don’t know what I may seem to the world, but, as to myself,
I seem to have been only like a boy playing on the sea-shore,
and diverting myself in now and then finding a smoother pebble
or a prettier shell than ordinary, whilst the great ocean of truth
lay all undiscovered before me.

Isaac Newton, shortly before his death in 1727

Supplement 4.1A
Equilibria in Mechanics

Let \mathbf{F} denote a force field defined on a certain domain U of \mathbb{R}^3. Thus,
$\mathbf{F} : U \to \mathbb{R}^3$ is a given vector field. Let us agree that a particle (with mass
m) is to move along a path $c(t)$ in such a way that Newton’s law holds;
mass \times acceleration = force; that is, the path $c(t)$ is to satisfy the equation

$$m c''(t) = \mathbf{F}(c(t)). \quad (1)$$

If \mathbf{F} is a potential field with potential V, that is, if $\mathbf{F} = -\nabla V$, then

$$\frac{1}{2} m \|c'(t)\|^2 + V(c(t)) = \text{constant}. \quad (2)$$
(The first term is called the kinetic energy.) Indeed, by differentiating the left side of (2) using the chain rule
\[
\frac{d}{dt} \left[\frac{1}{2}m\|\mathbf{c}'(t)\|^2 + V(\mathbf{c}(t)) \right] = mc'(t) \cdot c''(t) + \nabla V(\mathbf{c}(t)) \cdot \mathbf{c}'(t)
\]
\[
= [mc''(t) + \nabla V(\mathbf{c}(t))] \cdot \mathbf{c}'(t) = 0.
\]

since \(mc''(t) = -\nabla V(\mathbf{c}(t))\). This proves formula (2).

Definition. A point \(x_0 \in U\) is called a position of equilibrium if the force at that point is zero: \(F : (x_0) = 0\). A point \(x_0\) that is a position of equilibrium is said to be stable if for every \(\rho > 0\) and \(\epsilon > 0\), we can choose numbers \(\rho_0 > 0\) and \(\epsilon_0 > 0\) such that a point situated anywhere at a distance less that \(\rho_0\) from \(x_0\), after initially receiving kinetic energy in an amount less than \(\epsilon_0\), will forever remain a distance from \(x_0\) less then \(\rho\) and possess kinetic energy less then \(\epsilon\) (see Figure 4.1.1).

![Figure 4.1.1. Motion near a stable point \(x_0\).](image)

Thus if we have a position of equilibrium, stability at \(x_0\) means that a slowly moving particle near \(x_0\) will always remain near \(x_0\) and keep moving slowly. If we have an unstable equilibrium point \(x_0\), then \(\mathbf{c}(t) = x_0\) solves the equation \(mc''(t) = F(\mathbf{c}(t))\), but nearby solutions may move away from \(x_0\) as time progresses. For example, a pencil balancing on its tip illustrates an unstable configuration, whereas a ball hanging on a spring illustrates a stable equilibrium.

Theorem 1.

(i) Critical points of a potential are the positions of equilibrium.

(ii) In a potential field, a point \(x_0\) at which the potential takes a strict local minimum is a position of stable equilibrium. (Recall that a function \(f\) is said to have a strict local minimum at the point \(x_0\) if there exists
4.1A Equilibria in Mechanics

Proof. The first assertion is quite obvious from the definition $F = -\nabla V$; equilibrium points x_0 are exactly critical points of V, at which $\nabla V(x_0) = 0$.

To prove assertion (ii), we shall make use of the law of conservation of energy, that is, equation (2). We have

$$\frac{1}{2} m \|c'(t)\|^2 + V(c(t)) = \frac{1}{2} m \|c'(0)\|^2 + V(c(0)).$$

We shall argue slightly informally to amplify and illuminate the central ideas involved. Let us choose a small neighborhood of x_0 and start our particle with a small kinetic energy. As t increases, the particle moves away from x_0 on a path $c(t)$ and $V(c(t))$ increases [since $V(x_0) = V(c(0))$ is a strict minimum], so that the kinetic energy must decrease. If the initial kinetic energy is sufficiently small, then in order for the particle to escape from our neighborhood of x_0, outside of which V has increased by a definite amount, the kinetic energy would have to become negative (which is impossible). Thus the particle cannot escape the neighborhood.

Example 1. Find the points that are positions of equilibrium, and determine whether or not they are stable, if the force field $F = F_x i + F_y j + F_z k$ is given by $F_x = -k^2 x, F_y = -k^2 y, F_z = -k^2 z (k \neq 0)$.

Solution. The force field F is a potential field with potential given by the function $V = \frac{1}{2} k^2 (x^2 + y^2 + z^2)$. The only critical point of V is at the origin. The Hessian of V at the origin is $\frac{1}{2} k^2 (h_1^2 + h_2^2 + h_3^2)$, which is positive-definite. It follows that the origin is a strict minimum of V. Thus, by (i) and (ii) of Theorem 1, we have shown that the origin is a position of stable equilibrium.

Example 2. Let a point in a potential field V be constrained to remain on the level surface S given by the equation $\phi(x, y, z) = 0$, with $\nabla \phi \neq 0$. If in formula (1) we replace F by the component of F parallel to S, we ensure that the particle will remain on S. By analogy with Theorem 1, we have:

Theorem 2.

(i) If at a point P on the surface S the potential $V|S$ has an extreme value, then the point P is a position of equilibrium on the surface.

1 The force field in this example is that governing the motion of a three-dimensional harmonic oscillator.

2 If $\phi(x, y, z) = x^2 + y^2 + z^2 - r^2$, the particle is constrained to move on a sphere; for instance, it may be whirling on a string. The part subtracted from F to make it parallel to S is normal to S and is called the centripetal force.
(ii) If a point \(P \in S \) is a strict local minimum of the potential \(V|S \), then the point \(P \) is a position of stable equilibrium.

The proof of this theorem will be omitted. It is similar to the proof of Theorem 1., with the additional fact that the equation of motion uses only the component of \(F \) along the surface.

Example 2. Let \(F \) be the gravitational field near the surface of the earth; that is, let \(F = (F_x, F_y, F_z) \), where \(F_x = 0, F_y = 0, \) and \(F_z = -mg, \) where \(g \) is the acceleration due to gravity. What are the positions of equilibrium, if a particle with mass \(m \) is constrained to the sphere \(\phi(x, y, z) = x^2 + y^2 + z^2 - r^2 = 0 (r > 0)? \) Which of these are stable?

Solution. Notice that \(F \) is a potential field with \(V = mgz \). Using the method of Lagrange multipliers introduced in §3.4 to locate the possible extrema, we have the equations

\[
\nabla V = \lambda \nabla \phi
\]
\[
\phi = 0
\]

or, in terms of components,

\[
0 = 2\lambda x \\
0 = 2\lambda y \\
mg = 2\lambda z \\
x^2 + y^2 + z^2 - r^2 = 0.
\]

The solution of these simultaneous equations is \(x = 0, y = 0, z = \pm r, \lambda = \pm mg/2r. \) By Theorem 2, it follows that the points \(P_1(0,0,-r) \) and \(P_2 = (0,0,r) \) are positions of equilibrium. By observation of the potential function \(V = mgz \) and by Theorem 2, part (ii), it follows that \(P_1 \) is a strict minimum and hence a stable point, whereas \(P_2 \) is not. This conclusion should be physically obvious.

Exercises.

1. Let a particle move in a potential field in \(\mathbb{R}^2 \) given by \(V(x, y) = 3x^2 + 2xy + y^2 + y + 4 \). Find the stable equilibrium points, if any.

3These ideas can be applied to quite a number of interesting physical situations, such as molecular vibrations. The stability of such systems is an important question. For further information consult the physics literature (e.g. H. Goldstein, *Classical Mechanics*, Addison-Wesley, Reading, Mass., 1950, Chapter 10) and the mathematics literature (e.g. M. Hirsch and S. Smale, *Differential Equations, Dynamical Systems and Linear Algebra*, Academic Press, New York 1974).
2. Let a particle move in a potential field in \mathbb{R}^2 given by $V(x, y) = x^2 - 2xy + y^2 + y^3 + y^4$. Is the point $(0, 0)$ a position of a stable equilibrium?

3. (The solution is given at the end of this Internet Supplement). Let a particle move in a potential field in \mathbb{R}^2 given by $V(x, y) = x^2 - 4xy - y^2 - 8x - 6y$. Find all the equilibrium points. Which, if any, are stable?

4. Let a particle be constrained to move on the circle $x^2 + y^2 = 25$ subject to the potential $V = V_1 + V_2$, where V_1 is the gravitational potential in Example 2, and $V_2(x, y) = x^2 + 24xy + 8y^2$. Find the stable equilibrium points, if any.

5. Let a particle be constrained to move on the sphere $x^2 + y^2 + z^2 = 1$, subject to the potential $V = V_1 + V_2$, where V_1 is the gravitational potential in Example 2, and $V_2(x, y) = x + y$. Find the stable equilibrium points, if any.

6. Attempt to formulate a definition and a theorem saying that if a potential has a maximum at x_0, then x_0 is a position of unstable equilibrium. Watch out for pitfalls in your argument.
Supplement 4.1B
Rotations and the Sunshine Formula

In this supplement we use vector methods to derive formulas for the position of the sun in the sky as a function of latitude and the day of the year.\(^4\) To motivate this, have a look at the fascinating Figure 4.1.12 below which gives a plot of the length of day as a function of one’s latitude and the day of the year. Our goal in this supplement is to use vector methods to derive this formula and to discuss related issues.

This is a nice application of vector calculus ideas because it does not involve any special technical knowledge to understand and is something that everyone can appreciate. While it is not trivial, it also does not require any particularly advanced ideas—it mainly requires patience and perseverance. Even if one does not get all the way through the details, one can learn a lot about rotations along the way.

A Bit About Rotations. Consider two unit vectors \(l\) and \(r\) in space with the same base point. If we rotate \(r\) about the axis passing through \(l\), then the tip of \(r\) describes a circle (Figure 4.1.2). (Imagine \(l\) and \(r\) glued rigidly at their base points and then spun about the axis through \(l\).) Assume that the rotation is at a uniform rate counterclockwise (when viewed from the tip of \(l\)), making a complete revolution in \(T\) units of time. The vector \(r\) now is a vector function of time, so we may write \(r = c(t)\). Our first aim is to find a convenient formula for \(c(t)\) in terms of its starting position \(r_0 = c(0)\).

\[\text{Figure 4.1.2. If } r \text{ rotates about } l, \text{ its tip describes a circle.}\]

Let \(\lambda\) denote the angle between \(l\) and \(r_0\); we can assume that \(\lambda \neq 0\) and \(\lambda \neq \pi, \text{i.e.,} l\) and \(r_0\) are not parallel, for otherwise \(r\) would not rotate. In

\(^4\)This material is adapted from Calculus I, II, III by J. Marsden and A. Weinstein, Springer-Verlag, New York, which can be referred to for more information and some interesting historical remarks. See also Dave Rusin’s home page http://www.math.niu.edu/~rusin/ and in particular his notes on the position of the sun in the sky at http://www.math.niu.edu/~rusin/uses-math/position.sun/ We thank him for his comments on this section.
In fact, we shall take \(\lambda \) in the open interval \((0, \pi)\). Construct the unit vector \(\mathbf{m}_0 \) as shown in Figure 4.1.3. From this figure we see that

\[
\mathbf{r}_0 = (\cos \lambda)\mathbf{l} + (\sin \lambda)\mathbf{m}_0. \tag{1}
\]

![Figure 4.1.3](image)

The vector \(\mathbf{m}_0 \) is in the plane of \(\mathbf{r}_0 \) and \(\mathbf{l} \), is orthogonal to \(\mathbf{l} \), and makes an angle of \((\pi/2) - \lambda\) with \(\mathbf{r}_0 \).

In fact, formula (1) can be taken as the algebraic definition of \(\mathbf{m}_0 \) by writing

\[
\mathbf{m}_0 = \left(\frac{1}{\sin \lambda} \right)\mathbf{r}_0 - \left(\frac{\cos \lambda}{\sin \lambda} \right)\mathbf{l}.
\]

We assumed that \(\lambda \neq 0 \), and \(\lambda \neq \pi \), so \(\sin \lambda \neq 0 \).

Now add to this figure the unit vector \(\mathbf{n}_0 = \mathbf{l} \times \mathbf{m}_0 \). (See Figure 4.1.4.) The triple \((\mathbf{l}, \mathbf{m}_0, \mathbf{n}_0)\) consists of three mutually orthogonal unit vectors, just like \((\mathbf{i}, \mathbf{j}, \mathbf{k})\).

![Figure 4.1.4](image)

The triple \((\mathbf{l}, \mathbf{m}_0, \mathbf{n}_0)\) is a right-handed orthogonal set of unit vectors.

Example 1. Let \(\mathbf{l} = (1/\sqrt{3})(\mathbf{i} + \mathbf{j} + \mathbf{k}) \) and \(\mathbf{r}_0 = \mathbf{k} \). Find \(\mathbf{m}_0 \) and \(\mathbf{n}_0 \).

Solution. The angle between \(\mathbf{l} \) and \(\mathbf{r}_0 \) is given by \(\cos \lambda = \mathbf{l} \cdot \mathbf{r}_0 = 1/\sqrt{3} \). This was determined by dotting both sides of formula (1) by \(\mathbf{l} \) and using the fact that \(\mathbf{l} \) is a unit vector. Thus, \(\sin \lambda = \sqrt{1 - \cos^2 \lambda} = \sqrt{2/3} \), and so from formula (1) we get

\[
\mathbf{m}_0 = \frac{1}{\sin \lambda} \text{c}(0) - \frac{\cos \lambda}{\sin \lambda} \mathbf{l}
\]

\[
= \sqrt{\frac{3}{2}} \mathbf{k} - \frac{1}{\sqrt{3}} \sqrt{\frac{3}{2}} \cdot \frac{1}{\sqrt{3}} (\mathbf{i} + \mathbf{j} + \mathbf{k}) = \frac{2}{\sqrt{6}} \mathbf{k} - \frac{1}{\sqrt{6}} (\mathbf{i} + \mathbf{j}).
\]
and
\[n_0 = l \times m_0 = \begin{vmatrix} i & j & k \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & -\frac{2}{\sqrt{6}} \end{vmatrix} = \frac{1}{\sqrt{2}}\mathbf{i} - \frac{2}{\sqrt{2}}\mathbf{j}. \]

Return to Figure 4.1.4 and rotate the whole picture about the axis \(l \). Now the “rotated” vectors \(m \) and \(n \) will vary with time as well. Since the angle \(\lambda \) remains constant, formula (1) applied after time \(t \) to \(r \) and \(l \) gives (see Figure 4.1.5)
\[
m = \frac{1}{\sin \lambda} r - \frac{\cos \lambda}{\sin \lambda} l.
\]

\[m = \cos \left(\frac{2\pi t}{T} \right) m_0 + \sin \left(\frac{2\pi t}{T} \right) n_0. \]

Inserting this in formula (2) and rearranging gives
\[
r(t) = (\cos \lambda) l + \sin \lambda \cos \left(\frac{2\pi t}{T} \right) m_0 + \sin \lambda \sin \left(\frac{2\pi t}{T} \right) n_0. \tag{3}
\]

This formula expresses explicitly how \(r \) changes in time as it is rotated about \(l \), in terms of the basic vector triple \((l, m_0, n_0)\).

Example 2. Express the function \(c(t) \) explicitly in terms of \(l, r_0, \) and \(T \).

Solution. We have \(\cos \lambda = l \cdot r_0 \) and \(\sin \lambda = \| l \times r_0 \| \). Furthermore \(n_0 \) is a unit vector perpendicular to both \(l \) and \(r_0 \), so we must have (up to an
orientation)\n\n$$n_0 = \frac{1 \times r_0}{\|1 \times r_0\|}.$$\n
Thus $$(\sin \lambda)n_0 = l \times r_0.$$ Finally, from formula (1), we obtain $$(\sin \lambda)m_0 = r_0 - (\cos \lambda)l = r_0 - (r_0 \cdot l)l.$$ Substituting all this into formula (3),\n\n$$r = (r_0 \cdot l)l + \cos \left(\frac{2\pi t}{T}\right) [r_0 - (r_0 \cdot l)l] + \sin \left(\frac{2\pi t}{T}\right) (l \times r_0).$$ ❧\n
Example 3. Show by a direct geometric argument that the speed of the tip of r is $(2\pi/T)\sin \lambda$. Verify that equation (3) gives the same formula.\n
Solution. The tip of r sweeps out a circle of radius sin λ, so it covers a distance $2\pi \sin \lambda$ in time T. Its speed is therefore $(2\pi \sin \lambda)/T$ (Figure 4.1.6).\n
![Figure 4.1.6. The tip of r sweeps out a circle of radius sin λ.](image)

From formula (3), we find the velocity vector to be\n\n$$\frac{dr}{dt} = -\sin \lambda \cdot \frac{2\pi}{T} \sin \left(\frac{2\pi t}{T}\right) m_0 + \sin \lambda \cdot \frac{2\pi}{T} \cos \left(\frac{2\pi t}{T}\right) n_0,$$\n
and its length is (since m_0 and n_0 are unit orthogonal vectors)\n\n$$\left\| \frac{dr}{dt} \right\| = \sqrt{\sin^2 \lambda \cdot \left(\frac{2\pi}{T}\right)^2 \sin^2 \left(\frac{2\pi t}{T}\right) + \sin^2 \lambda \cdot \left(\frac{2\pi}{T}\right)^2 \cos^2 \left(\frac{2\pi t}{T}\right)} \\n\n= \sin \lambda \cdot \left(\frac{2\pi}{T}\right),$$\n
as above. ❧
Rotation and Revolution of the Earth. Now we apply our study of rotations to the motion of the earth about the sun, incorporating the rotation of the earth about its own axis as well. We will use a simplified model of the earth-sun system, in which the sun is fixed at the origin of our coordinate system and the earth moves at uniform speed around a circle centered at the sun. Let \(\mathbf{u} \) be a unit vector pointing from the sun to the center of the earth; we have

\[
\mathbf{u} = \cos(2\pi t/T_y)i + \sin(2\pi t/T_y)j
\]

where \(T_y \) is the length of a year (\(t \) and \(T_y \) measured in the same units). See Figure 4.1.7. Notice that the unit vector pointing from the earth to the sun is \(-\mathbf{u}\) and that we have oriented our axes so that \(\mathbf{u} = i \) when \(t = 0 \).

![Figure 4.1.7. The unit vector \(\mathbf{u} \) points from the sun to the earth at time \(t \).](image)

Next we wish to take into account the rotation of the earth. The earth rotates about an axis which we represent by a unit vector \(\mathbf{l} \) pointing from the center of the earth to the North Pole. We will assume that \(\mathbf{l} \) is fixed\(^5\) with respect to \(i, j, \) and \(k \); astronomical measurements show that the inclination of \(\mathbf{l} \) (the angle between \(\mathbf{l} \) and \(k \)) is presently about 23.5°. We will denote this angle by \(\alpha \). If we measure time so that the first day of summer in the northern hemisphere occurs when \(t = 0 \), then the axis \(\mathbf{l} \) tilts in the direction \(-i\), and so we must have \(\mathbf{l} = \cos \alpha k - \sin \alpha i \). (See Figure 4.1.8)

Now let \(\mathbf{r} \) be the unit vector at time \(t \) from the center of the earth to a fixed point \(P \) on the earth’s surface. Notice that if \(\mathbf{r} \) is located with its base

\(^5\)Actually, the axis \(\mathbf{l} \) is known to rotate about \(k \) once every 21,000 years. This phenomenon called *precession* or *wobble*, is due to the irregular shape of the earth and may play a role in long-term climatic changes, such as ice ages. See pages 130-134 of *The Weather Machine* by Nigel Calder, Viking (1974).
point at \(P \), then it represents the local *vertical* direction. We will assume that \(P \) is chosen so that at \(t = 0 \), it is noon at the point \(P \); then \(r \) lies in the plane of \(l \) and \(i \) and makes an angle of less than 90° with \(-i\). Referring to Figure 4.1.9, we introduce the unit vector \(m_0 = -(\sin \alpha)k - (\cos \alpha)i \) orthogonal to \(l \). We then have \(r_0 = (\cos \lambda)l + (\sin \lambda)m_0 \), where \(\lambda \) is the angle between \(l \) and \(r_0 \). Since \(\lambda = \pi/2 - \ell \), where \(\ell \) is the latitude of the point \(P \), we obtain the expression \(r_0 = (\sin \ell)l + (\cos \ell)m_0 \). As in Figure 4.1.4, let \(n_0 = l \times m_0 \).

Example 4. Prove that \(n_0 = l \times m_0 = -j \).

Solution. Geometrically, \(l \times m_0 \) is a unit vector orthogonal to \(l \) and \(m_0 \) pointing in the sense given by the right-hand rule. But \(l \) and \(m_0 \) are both in the \(i - k \) plane, so \(l \times m_0 \) points orthogonal to it in the direction \(-j\). (See Figure 4.1.9).

Algebraically, \(l = (\cos \alpha)k - (\sin \alpha)i \) and \(m_0 = -(\sin \alpha)k - (\cos \alpha)i \), so

\[
 l \times m_0 = \begin{bmatrix} i & j & k \\ -\sin \alpha & 0 & \cos \alpha \\ -\cos \alpha & 0 & -\sin \alpha \end{bmatrix} = -j(\sin^2 \alpha + \cos^2 \alpha) = -j. \]

Now we apply formula (3) to get

\[
 r = (\cos \lambda)l + \sin \lambda \cos \left(\frac{2\pi t}{T_d} \right)m_0 + \sin \lambda \sin \left(\frac{2\pi t}{T_d} \right)n_0,
\]
Figure 4.1.9. The vector \mathbf{r} is the vector from the center of the earth to a fixed location P. The latitude of P is ℓ and the colatitude is $\lambda = 90^\circ - \ell$. The vector \mathbf{m}_0 is a unit vector in the plane of the equator (orthogonal to \mathbf{l}) and in the plane of \mathbf{l} and \mathbf{r}_0.

where T_d is the length of time it takes for the earth to rotate once about its axis (with respect to the “fixed stars”—i.e., our $\mathbf{i}, \mathbf{j}, \mathbf{k}$ vectors). Substituting the expressions derived above for $\lambda, \ell, \mathbf{m}_0,$ and \mathbf{n}_0, we get

$$\mathbf{r} = \sin \ell (\cos \alpha \mathbf{k} - \sin \alpha \mathbf{i}) + \cos \ell \cos \left(\frac{2\pi t}{T_d}\right) (\sin \alpha \mathbf{k} - \cos \alpha \mathbf{i}) - \cos \ell \sin \left(\frac{2\pi t}{T_d}\right) \mathbf{j}.$$

Hence

$$\mathbf{r} = - \left[\sin \ell \sin \alpha + \cos \ell \cos \alpha \cos \left(\frac{2\pi t}{T_d}\right) \right] \mathbf{i} - \cos \ell \sin \left(\frac{2\pi t}{T_d}\right) \mathbf{j} + \left[\sin \ell \cos \alpha - \cos \ell \sin \alpha \cos \left(\frac{2\pi t}{T_d}\right) \right] \mathbf{k}. \quad (4)$$

Example 5. What is the speed (in kilometers per hour) of a point on the equator due to the rotation of the earth? A point at latitude 60°? (The radius of the earth is 6371 kilometers.)

Solution. The speed is

$$s = (2\pi R/T_d) \sin \lambda = (2\pi R/T_d) \cos \ell,$$

where R is the radius of the earth and ℓ is the latitude. (The factor R is inserted since \mathbf{r} is a unit vector, the actual vector from the earth’s center to a point P on its surface is $R\mathbf{r}$).

6T_d is called the length of the sidereal day. It differs from the ordinary, or solar, day by about 1 part in 365 because of the rotation of the earth about the sun. In fact, $T_d \approx 23.93$ hours.
Using $T_d = 23.93$ hours and $R = 6371$ kilometers, we get $s = 1673 \cos \ell$ kilometers per hour. At the equator $\ell = 0$, so the speed is 1673 kilometers per hour; at $\ell = 60^\circ$, $s = 836.4$ kilometers per hour.

With formula (3) at our disposal, we are ready to derive the sunshine formula. The intensity of light on a portion of the earth’s surface (or at the top of the atmosphere) is proportional to $\sin A$, where A is the angle of elevation of the sun above the horizon (see Fig. 4.1.10). (At night $\sin A$ is negative, and the intensity then is of course zero.)

![Figure 4.1.10.](image)

Example 6. Set $t = 0$ in formula (4). For what ℓ is $\sin A = 0$? Interpret your result.

Solution. With $t = 0$ we get

$$
\sin A = \sin \ell \sin \alpha + \cos \ell \cos \alpha = \cos(\ell - \alpha).
$$

This is zero when $\ell - \alpha = \pm \pi/2$. Now $\sin A = 0$ corresponds to the sun on the horizon (sunrise or sunset), when $A = 0$ or π. Thus, at $t = 0$, this
occurs when $\ell = \alpha \pm (\pi/2)$. The case $\alpha + (\pi/2)$ is impossible, since ℓ lies between $-\pi/2$ and $\pi/2$. The case $\ell = \alpha - (\pi/2)$ corresponds to a point on the Antarctic Circle; indeed at $t = 0$ (corresponding to noon on the first day of northern summer) the sun is just on the horizon at the Antarctic Circle.

Our next goal is to describe the variation of $\sin A$ with time on a particular day. For this purpose, the time variable t is not very convenient; it will be better to measure time from noon on the day in question. To simplify our calculations, we will assume that the expressions $\cos(2\pi t/T_y)$ and $\sin(2\pi t/T_y)$ are constant over the course of any particular day; since T_y is approximately 365 times as large as the change in t, this is a reasonable approximation. On the nth day (measured from June 21), we may replace $2\pi t/T_y$ by $2\pi n/365$, and formula (4.1.4) gives

$$\sin A = (\sin \ell) P + (\cos \ell) \left[Q \cos \left(\frac{2\pi t}{T_d} \right) + R \sin \left(\frac{2\pi t}{T_d} \right) \right],$$

where

$$P = \cos(2\pi n/365) \sin \alpha, Q = \cos(2\pi n/365) \cos \alpha, \text{ and } R = \sin(2\pi n/365).$$

We will write the expression $Q \cos(2\pi t/T_d) + R \sin(2\pi t/T_d)$ in the form $U \cos[2\pi(t - t_n)/T_d]$, where t_n is the time of noon of the nth day. To find U, we use the addition formula to expand the cosine:

$$U \cos \left[\left(\frac{2\pi t}{T_d} \right) - \left(\frac{2\pi t_n}{T_d} \right) \right]$$

$$= U \left[\cos \left(\frac{2\pi t}{T_d} \right) \cos \left(\frac{2\pi t_n}{T_d} \right) + \sin \left(\frac{2\pi t}{T_d} \right) \sin \left(\frac{2\pi t_n}{T_d} \right) \right].$$

Setting this equal to $Q \cos(2\pi t/T_d) + R \sin(2\pi t/T_d)$ and comparing coefficients of $\cos 2\pi t/T_d$ and $\sin 2\pi t/T_d$ gives

$$U \cos \frac{2\pi t_n}{T_d} = Q \text{ and } U \sin \frac{2\pi t_n}{T_d} = R.$$
4.1B Rotations and the Sunshine Formula

Squaring the two equations and adding gives\(^7\)

\[U^2 = Q^2 + R^2 \quad \text{or} \quad U = \sqrt{Q^2 + R^2}, \]

while dividing the second equation by the first gives \(\tan(2\pi t_n/T_d) = R/Q \).

We are interested mainly in the formula for \(U \); substituting for \(Q \) and \(R \) gives

\[U = \sqrt{\cos^2 \left(\frac{2\pi n}{365} \right) \cos^2 \alpha + \sin^2 \frac{2\pi n}{365}}, \]

\[= \sqrt{\cos^2 \left(\frac{2\pi n}{365} \right) (1 - \sin^2 \alpha) + \sin^2 \frac{2\pi n}{365}} \]

\[= \sqrt{1 - \cos^2 \left(\frac{2\pi n}{365} \right) \sin^2 \alpha}. \]

Letting \(\tau \) be the time in hours from noon on the \(n \)th day so that \(\tau/24 = (t - t_n)/T_d \), we substitute into formula (5) to obtain the final formula:

\[
\sin A = \sin \ell \cos \left(\frac{2\pi n}{365} \right) \sin \alpha
\]

\[+ \cos \ell \sqrt{1 - \cos^2 \left(\frac{2\pi n}{365} \right) \sin^2 \alpha \cos \frac{2\pi \tau}{24}}. \quad (6)\]

Example 7. How high is the sun in the sky in Edinburgh (latitude 56°) at 2 p.m. on Feb. 1?

Solution. We plug into formula (6): \(\alpha = 23.5° \ell = 90° - 56° = 34° \), \(n = \) number of days after June 21 = 225, and \(\tau = 2 \) hours. We get \(\sin A = 0.5196 \), so \(A = 31.3° \).

Formula (4) also tells us how long days are.\(^8\) At the time \(S \) of sunset, \(A = 0 \). That is,

\[
\cos \left(\frac{2\pi S}{24} \right) = -\tan \ell \frac{\sin \alpha \cos (2\pi T/365)}{\sqrt{1 - \sin^2 \alpha \cos^2 (2\pi T/365)}.} \quad (4.1.1)\]

\(^7\)We take the positive square root because \(\sin A \) should have a local maximum when \(t = t_n \).

\(^8\)If \(\pi/2 - \alpha < |\ell| < \pi/2 \) (inside the polar circles), there will be some values of \(t \) for which the right-hand side of formula (1) does not lie in the interval \([-1, 1]\). On the days corresponding to these values of \(t \), the sun will never set (“midnight sun”). If \(\ell = \pm \pi/2 \), then \(\tan \ell = \infty \), and the right-hand side does not make sense at all. This reflects the fact that, at the poles, it is either light all day or dark all day, depending upon the season.
Solving for S, and remembering that $S \geq 0$ since sunset occurs after noon, we get
\[
S = \frac{12}{\pi} \cos^{-1} \left[-\tan \ell \frac{\sin \alpha \cos(2\pi T/365)}{\sqrt{1 - \sin^2 \alpha \cos^2(2\pi T/365)}} \right]. \tag{4.1.2}
\]

The graph of S is shown in Figure 4.1.12.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4.1.12}
\caption{Day length as a function of latitude and day of the year.}
\end{figure}

Exercises.

1. Let $l = (j + k)/\sqrt{2}$ and $r_0 = (i - j)/\sqrt{2}$.
 (a) Find m_0 and n_0.
 (b) Find $r = c(t)$ if $T = 24$.
 (c) Find the equation of the line tangent to $c(t)$ at $t = 12$ and $T = 24$.

2. From formula (3), verify that $c(T/2) \cdot n = 0$. Also, show this geometrically. For what values of t is $c(t) \cdot n = 0$?

3. If the earth rotated in the opposite direction about the sun, would T_d be longer or shorter than 24 hours? (Assume the solar day is fixed at 24 hours.)

4. Show by a direct geometric construction that
 \[
 r = c(T_d/4) = -(\sin \ell \sin \alpha)i - (\cos \ell)j + (\sin \ell \cos \alpha)k.
 \]
 Does this formula agree with formula (3)?
5. Derive an “exact” formula for the time of sunset from formula (4).

6. Why does formula (6) for $\sin A$ not depend on the radius of the earth? The distance of the earth from the sun?

7. How high is the sun in the sky in Paris at 3 p.m. on January 15? (The latitude of Paris is 49° N.)

8. How much solar energy (relative to a summer day at the equator) does Paris receive on January 15? (The latitude of Paris is 49° N).

9. How would your answer in Exercise 8 change if the earth were to roll to a tilt of 32° instead of 23.5°?
Supplement 4.1C
The Principle of Least Action

By Richard Feynman

When I was in high school, my physics teacher—whose name was Mr. Bader—called me down one day after physics class and said, “You look bored; I want to tell you something interesting.” Then he told me something which I found absolutely fascinating, and have, since then, always found fascinating. Every time the subject comes up, I work on it. In fact, when I began to prepare this lecture I found myself making more analyses on the thing. Instead of worrying about the lecture, I got involved in a new problem. The subject is this—the principle of least action.

Mr. Bader told me the following: Suppose you have a particle (in a gravitational field, for instance) which starts somewhere and moves to some other point by free motion—you throw it, and it goes up and comes down (Figure 4.1.13).

It goes from the original place to the final place in a certain amount of time. Now, you try a different motion. Suppose that to get from here to there, it went like this (Figure 4.1.14) but got there in just the same amount of time. Then he said this: If you calculate the kinetic energy at every moment on the path, take away the potential energy, and integrate it over the time during the whole path, you’ll find that the number you’ll get is bigger then that for the actual motion.

In other words, the laws of Newton could be stated not in the form $F = ma$ but in the form: the average kinetic energy less the average potential energy is as little as possible for the path of an object going from one point to another.

\[9\text{Lecture 19 from The Feynman Lectures on Physics.}\]
Let me illustrate a little bit better what it means. If you take the case of the gravitational field, then if the particle has the path $x(t)$ (let’s just take one dimension for a moment; we take a trajectory that goes up and down and not sideways), where x is the height above the ground, the kinetic energy is $\frac{1}{2}m\left(\frac{dx}{dt}\right)^2$, and the potential energy at any time is mgx. Now I take the kinetic energy minus the potential energy at every moment along the path and integrate that with respect to time from the initial time to the final time. Let’s suppose that at the original time t_1 we started at some height and at the end of the time t_2 we are definitely ending at some other place (Figure 4.1.15).

Then the integral is

$$\int_{t_1}^{t_2} \left[\frac{1}{2}m\left(\frac{dx}{dt}\right)^2 - mgx \right] dt.$$

The actual motion is some kind of a curve—it’s a parabola if we plot against the time—and gives a certain value for the integral. But we could imagine
4 Vector Valued Functions

some other motion that went very high and came up and down in some peculiar way (Figure 4.1.16).

![Figure 4.1.16](image)

We can calculate the kinetic energy minus the potential energy and integrate for such a path... or for any other path we want. The miracle is that the true path is the one for which that integral is least.

Let’s try it out. First, suppose we take the case of a free particle for which there is no potential energy at all. Then the rule says that in going from one point to another in a given amount of time, the kinetic energy integral is least, so it must go at a uniform speed. (We know that’s the right answer—to go at a uniform speed.) Why is that? Because if the particle were to go any other way, the velocities would be sometimes higher and sometimes lower then the average. The average velocity is the same for every case because it has to get from ‘here’ to ‘there’ in a given amount of time.

As and example, say your job is to start from home and get to school in a given length of time with the car. You can do it several ways: You can accelerate like mad at the beginning and slow down with the breaks near the end, or you can go at a uniform speed, or you can go backwards for a while and then go forward, and so on. The thing is that the average speed has got to be, of course, the total distance that you have gone over the time. But if you do anything but go at a uniform speed, then sometimes you are going too fast and sometimes you are going too slow. Now the mean square of something that deviates around an average, as you know, is always greater than the square of the mean; so the kinetic energy integral would always be higher if you wobbled your velocity than if you went at a uniform velocity. So we see that the integral is a minimum if the velocity is a constant (when there are no forces). The correct path is like this (Figure 4.1.17).

Now, an object thrown up in a gravitational field does rise faster first and then slow down. That is because there is also the potential energy, and we must have the least difference of kinetic and potential energy on the
average. Because the potential energy rises as we go up in space, we will get a lower difference if we can get as soon as possible up to where there is a high potential energy. Then we can take the potential away from the kinetic energy and get a lower average. So it is better to take a path which goes up and gets a lot of negative stuff from the potential energy (Figure 4.1.18).

On the other hand, you can’t go up too fast, or too far, because you will then have too much kinetic energy involved—you have to go very fast to get way up and come down again in the fixed amount of time available. So you don’t want to go too far up, but you want to go up some. So it turns out that the solution is some kind of balance between trying to get more potential energy with the least amount of extra kinetic energy—trying to get the difference, kinetic minus the potential, as small as possible.
That is all my teacher told me, because he was a very good teacher and knew when to stop talking. But I don’t know when to stop talking. So instead of leaving it as an interesting remark, I am going to horrify and disgust you with the complexities of life by proving that it is so. The kind of mathematical problem we will have is a very difficult and a new kind. We have a certain quantity which is called the action, \(S \). It is the kinetic energy, minus the potential energy, integrated over time.

\[
\text{Action} = S = \int_{t_1}^{t_2} (\text{KE} - \text{PE}) dt.
\]

Remember that the PE and KE are both functions of time. For each different possible path you get a different number for this action. Our mathematical problem is to find out for what curve that number is the least.

You say—Oh, that’s just the ordinary calculus of maxima and minima. You calculate the action and just differentiate to find the minimum.

But watch out. Ordinarily we just have a function of some variable, and we have to find the value of what variable where the function is least or most. For instance, we have a rod which has been heated in the middle and the heat is spread around. For each point on the rod we have a temperature, and we must find the point at which that temperature is largest. But now for each path in space we have a number—quite a different thing—and we have to find the path in space for which the number is the minimum. That is a completely different branch of mathematics. It is not the ordinary calculus. In fact, it is called the calculus of variations.

There are many problems in this kind of mathematics. For example, the circle is usually defined as the locus of all points at a constant distance from a fixed point, but another way of defining a circle is this: a circle is that curve of given length which encloses the biggest area. Any other curve encloses less area for a given perimeter than the circle does. So if we give the problem: find that curve which encloses the greatest area for a given perimeter, we would have a problem of the calculus of variations—a different kind of calculus than you’re used to.

So we make the calculation for the path of the object. Here is the way we are going to do it. The idea is that we imagine that there is a true path and that any other curve we draw is a false path, so that if we calculate the action for the false path we will get a value that is bigger that if we calculate the action for the true path (Figure 4.1.19).

Problem: Find the true path. Where is it? One way, of course, is to calculate the action for millions and millions of paths and look at which one is lowest. When you find the lowest one, that’s the true path.

That’s a possible way. But we can do it better than that. When we have a quantity which has a minimum—for instance, in and ordinary function like the temperature—one of the properties of the minimum is that if we go away from the minimum in the first order, the deviation of the function from its minimum value is only second order. At any place else on the
curve, if we move a small distance the value of the function changes also in the first order. But at a minimum, a tiny motion away makes, in the first approximation, no difference (Figure 4.1.20).

That is what we are going to use to calculate the true path. If we have the true path, a curve which differs only a little bit from it will, in the first approximation, make no difference in the action. Any difference will be in the second approximation, if we really have a minimum.

That is easy to prove. If there is a change in the first order when I deviate the curve a certain way, there is a change in the action that is proportional to the deviation. The change presumably makes the action greater; otherwise we haven’t got a minimum. But then if the change is proportional to the deviation, reversing the sign of the deviation will make the action less. We would get the action to increase one way and to decrease the other way. The only way that it could really be a minimum is that in the first approximation it doesn’t make any change, that the changes are
proportional to the square of the deviations from the true path.

So we work it this way: We call \(x(t) \) (with an underline) the true path—the one we are trying to find. We take some trial path \(x(t) \) that differs from the true path by a small amount which we will call \(\eta(t) \) (eta of \(t \)). (See Figure 4.1.21).

Now the idea is that if we calculate the action \(S \) for the path \(x(t) \), then the difference between that \(S \) and the action that we calculated for the path \(x(t) \)—to simplify the writing we can call it \(\bar{S} \)—the difference of \(S \) and \(\bar{S} \) must be zero in the first-order approximation of small \(\eta \). It can differ in the second order, but in the first order the difference must be zero.

And that must be true for any \(\eta \) at all. Well, not quite. The method doesn’t mean anything unless you consider paths which all begin and end at the same two points—each path begins at a certain point at \(t_1 \) and ends at a certain other point at \(t_2 \), and those points and times are kept fixed. So the deviations in our \(\eta \) have to be zero at each end, \(\eta(t_1) = 0 \) and \(\eta(t_2) = 0 \).

With that condition, we have specified our mathematical problem.

If you didn’t know any calculus, you might do the same kind of thing to find the minimum of an ordinary function \(f(x) \). You could discuss what happens if you take \(f(x) \) and add a small amount \(h \) to \(x \) and argue that the correction to \(f(x) \) in the first order in \(h \) must be zero at the minimum. You would substitute \(x + h \) for \(x \) and expand out to the first order in \(h \) ... just as we are going to do with \(\eta \).

The idea is then that we substitute \(x(t) = x(t) + \eta(t) \) in the formula for the action:

\[
S = \int \left[\frac{m}{2} \left(\frac{dx}{dt} \right)^2 - V(x) \right] dt,
\]

where I call the potential energy \(V(t) \). The derivative \(dx/dt \) is, of course, the derivative of \(x(t) \) plus the derivative of \(\eta(t) \), so for the action I get this
expression:

$$S = \int_{t_1}^{t_2} \left[\frac{m}{2} \left(\frac{dx}{dt} + \frac{d\eta}{dt} \right)^2 - V(x + \eta) \right] dt.$$

Now I must write this out in more detail. For the squared term I get

$$\left(\frac{dx}{dt} \right)^2 + 2 \frac{dx}{dt} \frac{d\eta}{dt} + \left(\frac{d\eta}{dt} \right)^2$$

But wait. I’m worrying about higher than the first order, so I will take all the terms which involve η^2 and higher powers and put them in a little box called ‘second and higher order.’ From this term I get only second order, but there will be more from something else. So the kinetic energy part is

$$\frac{m}{2} \left(\frac{dx}{dt} \right)^2 + m \frac{dx}{dt} \frac{d\eta}{dt} + \text{(second and higher order)}.$$

Now we need the potential V at $x + \eta$. I consider η small, so I can write $V(x)$ as a Taylor series. It is approximately $V(x)$; in the next approximation (from the ordinary nature of derivatives) the correction is η times the rate of change of V with respect to x, and so on:

$$V(x + \eta) = V(x) + \eta V'(x) + \frac{\eta^2}{2} V''(x) + \ldots$$

I have written V' for the derivative of V with respect to x in order to save writing. The term in η^2 and the ones beyond fall into the ‘second and higher order’ category and we don’t have to worry about them. Putting it all together,

$$S = \int_{t_1}^{t_2} \left[\frac{m}{2} \left(\frac{dx}{dt} \right)^2 - V(x) + m \frac{dx}{dt} \frac{d\eta}{dt} - \eta V'(x) + \text{(second and higher order)} \right] dt.$$

Now if we look carefully at the thing, we see that the first two terms which I have arranged here correspond to the action S that I would have calculated with the true path x. The thing I want to concentrate on is the change in S—the difference between the S and the S that we would get for the right path. This difference we will write as δS, called the variation in S. Leaving out the ‘second and higher order’ terms, I have for δS

$$\delta S = \int_{t_1}^{t_2} \left[m \frac{dx}{dt} \frac{d\eta}{dt} - \eta V'(x) \right] dt.$$

Now the problem is this: Here is a certain integral. I don’t know what the x is yet, but I do know that no matter what η is, this integral must
be zero. Well, you think, the only way that that can happen is that what multiplies η must be zero. But what about the first term with $d\eta/dt$? Well, after all, if η can be anything at all, its derivative is anything also, so you conclude that the coefficient of $d\eta/dt$ must also be zero. That isn’t quite right. It isn’t quite right because there is a connection between η and its derivative; they are not absolutely independent, because $\eta(t)$ must be zero at both t_1 and t_2.

The method of solving all problems in the calculus of variations always uses the same general principle. You make the shift in the thing you want to vary (as we did by adding η); you look at the first-order terms; then you always arrange things in such a form that you get an integral of the form ‘some kind of stuff times the shift (η),’ but with no other derivatives (no $d\eta/dt$). It must be rearranged so it is always ‘something’ times η. You will see the great value of that in a minute. (There are formulas that tell you how to do this in some cases without actually calculating, but they are not general enough to be worth bothering about; the best way is to calculate it out this way.)

How can I rearrange the term in $d\eta/dt$ to make it have an η? I can do that by integrating by parts. It turns out that the whole trick of the calculus of variations consists of writing down the variation of S and then integrating by parts so that the derivatives of η disappear. It is always the same in every problem in which derivatives appear.

You remember the general principle for integrating by parts. If you have any function f times $d\eta/dt$ integrated with respect to t, you write down the derivative of ηf:

$$\frac{d}{dt}(\eta f) = \eta \frac{df}{dt} + f \frac{d\eta}{dt}.$$

The integral you want is over the last term, so

$$\int f \frac{d\eta}{dt} dt = \eta f - \int \eta \frac{df}{dt} dt.$$

In our formula for δS, the function f is m times dx/dt; therefore, I have the following formula for δS.

$$\delta S = m \frac{dx}{dt} \eta(t) \bigg|_{t_1}^{t_2} - \int_{t_1}^{t_2} d \left(m \frac{dx}{dt} \right) \eta(t) dt - \int_{t_1}^{t_2} V'(\xi) \eta(t) dt.$$

The first term must be evaluated at the two limits t_1 and t_2. Then I must have the integral from the rest of the integration by parts. The last term is brought down without change.

Now comes something which always happens—the integrated part disappears. (In fact, if the integrand part does not disappear, you restate the principle, adding conditions to make sure it does!) We have already said that η must be zero at both ends of the path, because the principle is that the action is a minimum provided that the varied curve begins and ends
at the chosen points. The condition is that \(\eta(t_1) = 0 \) and \(\eta(t_2) = 0 \). So the integrated term is zero. We collect the other terms together and obtain this:

\[
\delta S = \int_{t_1}^{t_2} \left[-m \frac{d^2 x}{dt^2} - V'(x) \right] \eta(t) dt.
\]

The variation in \(S \) is now the way we wanted it—there is the stuff in brackets, say \(F \), all multiplied by \(\eta(t) \) and integrated from \(t_1 \) to \(t_2 \).

We have that an integral of something or other times \(\eta(t) \) is always zero:

\[
\int F(t) \eta(t) dt = 0.
\]

I have some function of \(t \); I multiply it by \(\eta(t) \); and I integrate it from one end to the other. And no matter what the \(\eta \) is, I get zero. That means that the function \(F(t) \) is zero. That’s obvious, but anyway I’ll show you one kind of proof.

Suppose that for \(\eta(t) \) I took something which was zero for all \(t \) except right near one particular value (See Figure 4.1.22). It stays zero until it gets to this \(t \), then it blips up for a moment and blips right back down.

![Figure 4.1.22.](image)

When we do the integral of this \(\eta \) times any function \(F \), the only place that you get anything other than zero was where \(\eta(t) \) was blipping, and then you get the value of \(F \) at that place times the integral over the blip. The integral over the blip alone isn’t zero, but when multiplied by \(F \) it has to be; so the function \(F \) has to be zero everywhere.

We see that if our integral is zero for any \(\eta \), then the coefficient of \(\eta \) must be zero. The action integral will be a minimum for the path that satisfies this complicated differential equation:

\[
\left[-m \frac{d^2 x}{dt^2} - V'(x) \right] = 0.
\]

It’s not really so complicated; you have seen it before. It is just \(F = ma \). The first term is the mass times acceleration, and the second is the derivative of the potential energy, which is the force.
So, for a conservative system at least, we have demonstrated that the principle of least action gives the right answer; it says that the path that has the minimum action is the one satisfying Newton’s law.

One remark: I did not prove it was a minimum—maybe it’s a maximum. In fact, it doesn’t really have to be a minimum. It is quite analogous to what we found for the ‘principle of least time’ which we discussed in optics. There also, we said at first it was ‘least’ time. It turned out, however, that there were situations in which it wasn’t the least time. The fundamental principle was that for any first-order variation away from the optical path, the change in time was zero; it is the same story. What we really mean by ‘least’ is that the first-order change in the value of S, when you change the path, is zero. It is not necessarily a ‘minimum’.

See the “Feynman Lectures on Physics” for the remainder of the lecture, which involves extending the above ideas to three dimensions and similar topics.
Supplement to §4.3
The Orbits of Planets

The purpose of this supplement is to demonstrate that the motion of a body moving under the influence of Newton’s gravitational law—that is, the inverse square force law—moves in a conic section. In the text we dealt with circular orbits only, but some of the results, such as Kepler’s law on the relation between the period and the size of the orbit can be generalized to the case of elliptical orbits.

History. At this point it is a good idea to review some of the history given at the beginning of the text in addition to the relevant sections of the text (especially §4.1). Recall, for example, that one of the important observational points that was part of the Ptolemaic theory as well as being properly explained by the fact that planets move (to an excellent degree of approximation) in ellipses about the sun, is the appearance of retrograde motion of the planets, as in Figure 4.3.1.

Figure 4.3.1. the apparent motion of the planets. The photograph shows the movements of Mercury, Venus, Mars, Jupiter, and Saturn. the diagram shows the paths traced by the planets as seen from the Earth, which the Ptolemaic theory tried to explain.
Methodology. Our approach in this supplement is to use the laws of conservation of energy and conservation of angular momentum. This means that we will focus on a combination of techniques using the basic laws of mechanics together with techniques from differential equations together with a couple of tricks. Other approaches, and in fact, Newton’s original approach were much more geometrical.10

The Kepler Problem. As in the text, we assume that the Sun (of mass M) is so massive that it remains fixed at the origin and our planet (with mass m) revolves about the Sun according to Newton’s second law and moving in the field determined by Newton’s Law of Gravitation. Therefore, the Kepler problem is the following: Demonstrate that the solution $r(t)$ of the equation

$$m\ddot{r} = \frac{GmM}{r^2} \quad (4.3.3)$$

is a conic section. The procedure is to suppose that we have a solution, which we will refer to as an orbit, and to show it is a conic section. By reversing the argument, one can also show that any conic section, with a suitable time parametrization, is also a solution.

Energy and Angular Momentum. We saw in the paragraph in §4.3 of the text entitled Conservation of Energy and Escaping the Earth’s Gravitational Field that any solution of equation (4.3.3) obeys the law of conservation of energy; that is, the quantity

$$E = \frac{1}{2}m\|\dot{r}\|^2 - \frac{GmM}{r} \quad (4.3.4)$$

called the \textit{energy} of the solution, is constant in time.

The second fact that we will need is conservation of angular momentum, which was given in Exercise 20, §4.1. This states that the \textit{angular momentum} of a solution is constant in time, namely the cross product

$$J = mr \times \dot{r} \quad (4.3.5)$$

is time independent for each orbit.

Orbits Lie in Planes. The first thing we observe is that any solution must lie in a plane. This is simply because of conservation of angular momentum: since J is a constant and since $J = mr \times \dot{r}$, it follows that r lies in the plane perpendicular to the (constant) vector J.

Introducing Polar Coordinates. From the above consideration, we can assume that our orbit lies in a plane, which we can take to be the usual

10The geometric approach, along with a lot of interesting history, is also emphasized in the little book \textit{Feynman’s Lost Lecture: The Motion of Planets Around the Sun} by David L. Goodstein and Judith R. Goodstein, W.W. Norton and Co., New York.
4.3 Orbits of Planets

Let us introduce polar coordinates \((r, \theta)\) in that plane as usual, so that the components of the position vector \(\mathbf{r}\) are given by

\[
\mathbf{r} = (r \cos \theta, r \sin \theta).
\]

Differentiating in \(t\), we see that the velocity vector has components given by

\[
\dot{\mathbf{r}} = (\dot{r} \cos \theta - r \dot{\theta} \sin \theta, \dot{r} \sin \theta + r \dot{\theta} \cos \theta)
\]

and so one readily computes that

\[
\|\dot{\mathbf{r}}\|^2 = \dot{r}^2 + r^2 \dot{\theta}^2. \tag{4.3.6}
\]

Substituting (4.3.6) into conservation of energy gives

\[
E = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - \frac{GmM}{r} \tag{4.3.7}
\]

Similarly, the angular momentum is computed by taking the cross product of \(\mathbf{r}\) and \(\dot{\mathbf{r}}\):

\[
\mathbf{J} = m \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
r \cos \theta & r \sin \theta & 0 \\
\dot{r} \cos \theta - r \dot{\theta} \sin \theta & \dot{r} \sin \theta + r \dot{\theta} \cos \theta & 0
\end{vmatrix}
\tag{4.3.8}
\]

\[
= mr^2 \dot{\theta} \mathbf{k}
\tag{4.3.9}
\]

Thus,

\[
\mathbf{J} = mr^2 \dot{\theta}
\tag{4.3.10}
\]

is constant in time.

Kepler’s Second Law. We notice that the expression for \(\mathbf{J}\) is closely related to the area element in polar coordinates, namely \(dA = \frac{1}{2} r^2 d\theta\). In fact, measuring area from a given reference \(\theta_0\), we get

\[
dA = \frac{J}{2m}
\tag{4.3.11}
\]

which is a constant. Thus, we get *Kepler’s second law*, namely that for an orbit, equal areas are swept out in equal times. Also note that this works for any central force motion law as it depends only on conservation of angular momentum.

Rewriting the Energy Equation. Next notice that the energy equation (4.3.7) can be written, with \(\dot{\theta}\) eliminated using (4.3.10), as

\[
E = \frac{1}{2} mr^2 + \frac{J^2}{2mr^2} - \frac{GmM}{r} \tag{4.3.12}
\]

It will be convenient to seek a description of the orbit in polar form as \(r = r(\theta)\).
A Trick. Solving differential equations to get explicit formulas often involves a combination of clever guesses, insight and luck; the situation with the Kepler problem is one of these situations. A trick that works is to introduce the new dependent variable $u = 1/r$ (of course one has to watch out for the possibility that the orbit passes through the origin, in which case r would be zero.) But watch the nice things that happen with this choice.

First of all, by the chain rule,

$$\frac{du}{d\theta} = -\frac{1}{r^2} \frac{dr}{d\theta}$$

and second, notice that, using the chain rule, the preceding equation and (4.3.10),

$$\dot{r} = \frac{dr}{d\theta} \dot{\theta} = -r^2 \dot{\theta} \frac{du}{d\theta}$$

$$= -\frac{J}{m} \frac{du}{d\theta}$$

and so from (4.3.12) we find that

$$E = \frac{J^2}{2m} \left(\frac{du}{d\theta} \right)^2 + \frac{J^2 u^2}{2m} - GmMu, \quad (4.3.13)$$

that is,

$$\frac{2Em}{J^2} = \left(\frac{du}{d\theta} \right)^2 + u^2 - \frac{2GMm^2}{J^2} u, \quad (4.3.14)$$

Notice the interesting way that only u and its derivative with respect to θ appears and that the denominators containing r have been eliminated. This is the main purpose of doing the change of dependent variable from r to u.

Completing the Square. Next, we are going to eliminate the term linear in u in (4.3.14) by completing the square. Let $\alpha = GMm^2/J^2$, so that (4.3.14) becomes

$$\frac{2Em}{J^2} = \left(\frac{du}{d\theta} \right)^2 + u^2 - 2\alpha u, \quad (4.3.15)$$

Now let

$$v = u - \alpha$$

so that equation (4.3.15) becomes

$$\left(\frac{dv}{d\theta} \right)^2 + v^2 = \beta^2, \quad (4.3.16)$$

where

$$\beta^2 = \frac{2Em}{J^2} - \alpha^2.$$
We make one more change of variables to

\[w = \frac{1}{\alpha} v = \frac{1}{\alpha} u - 1 \]

so that (4.3.16) becomes

\[\left(\frac{dw}{d\theta} \right)^2 + w^2 = e^2, \tag{4.3.17} \]

where

\[e^2 = \frac{\beta^2}{\alpha^2} = \frac{2Em}{\alpha^2J^2} - 1. \]

Solving the Equation. The solution of the equation (4.3.17) is readily verified to be

\[w = e \cos(\theta - \theta_0) \]

where \(\theta_0 \) is a constant of integration. In terms of the original variable \(r \), this means that

\[r (e \cos(\theta - \theta_0) + 1) = \frac{1}{\alpha}. \tag{4.3.18} \]

Orbits are Conics. Equation (4.3.18) in fact is the equation of a conic written in polar coordinates, where \(e \) is the eccentricity of the orbit, which determines its shape. The quantity \(l = \frac{1}{\alpha} \) determines its scale and \(\theta_0 \) its orientation relative to the \(xy \)-axes; it is also the angle of the closest approach to the origin.

In the case that \(0 \leq e < 1 \) (and \(E < 0 \)) one has an ellipse of the form

\[\frac{(x + ae)^2}{a^2} + \frac{y^2}{b^2} = 1 \]

where

\[a = \frac{l}{1 - e^2} = -\frac{GmM}{2E} \]

and

\[b^2 = al = -\frac{J^2}{2mE}. \]

The case \(e = 0 \) gives circular orbits. One also gets hyperbolic orbits if \(e > 1 \) and parabolic orbits in the special case when \(e = 1 \). Thus, as \(e \) ranges from 0 to 1, the ellipse gets a more and more elongated shape.

Kepler’s 3rd Law. From Kepler’s second law and the fact that the area of an ellipse is \(\pi ab \), one finds that the period \(T \) of an elliptical orbit is related to the semi-major axis \(a \) by

\[\left(\frac{T}{2\pi} \right)^2 = \frac{a^3}{GM} \]

which is Kepler’s third law. Note that this reduces to what we saw in the text for circular orbits in the case of a circle (when \(a \) is the radius of the circle).
Supplement to §4.4
Flows and the Geometry of the Divergence

Flows of Vector Fields. It is convenient to give the unique solution through a given point at time 0 a special notation:

\[\phi(x, t) = \begin{cases}
\text{the position of the point on the flow line} \\
\text{through the point x after time t has elapsed.}
\end{cases} \]

With x as the initial condition, follow along the flow line for a time period t until the new position \(\phi(x, t) \) is reached (see Figure 1). Alternatively,

\[\phi(x, t) \text{ is defined by:} \]

\[\frac{\partial}{\partial t} \phi(x, t) = F(\phi(x, t)) \quad \phi(x, 0) = x \]

(1)

We call the mapping \(\phi \), which is regarded as the function of the variables x and t, the flow of F.

Let \(D_x \) denote differentiation with respect to x, holding t fixed. It is proved in courses on differential equations that \(\phi \) is, in fact, a differentiable function of x. By differentiating equation (1) with respect to x, we get

\[D_x \frac{\partial}{\partial t} \phi(x, t) = D_x[F(\phi(x, t))] \].

The equality of mixed partial derivatives may be used on the left-hand side of this equation and the chain rule applied to the right-hand side, yielding

\[\frac{\partial}{\partial t} D_x \phi(x, t) = D_F(\phi(x, t))D_x \phi(x, t), \]

(2)
4.4 Flows and the Geometry of the Divergence

where \(\mathbf{DF}(\phi(x,t)) \) denotes the derivative of \(F \) evaluated \(\phi(x,t) \). Equation (2), a linear differential equation for \(\mathbf{D}_x\phi(x,t) \) is called the \textit{equation of the first variation}. It will be useful in our discussion of divergence and curl in the next section. Both \(\mathbf{D}_x F(\phi) \) and \(\mathbf{D}_x \phi \) are \(3 \times 3 \) matrices since \(F \) and \(\phi \) take values in \(\mathbb{R}^3 \) and are differentiated with respect to \(x \in \mathbb{R}^3 \); for vector fields in the plane, they would be \(2 \times 2 \) matrices.

The Geometry of the Divergence. We now study the geometric meaning of the divergence in more detail. This discussion depends on the concept of the flow \(\phi(x,t) \) of a vector field \(F \) given in the preceding paragraph. See Exercises 3, 4, and 5 below for the corresponding discussion of the curl.

Fix a point \(x \) and consider the three standard basis vectors \(\mathbf{i}, \mathbf{j}, \mathbf{k} \) emanating from \(x \). Let \(\varepsilon > 0 \) be small and consider the basis vectors \(\mathbf{v}_1 = \varepsilon \mathbf{i}, \mathbf{v}_2 = \varepsilon \mathbf{j}, \mathbf{v}_3 = \varepsilon \mathbf{k} \), also emanating from \(x \). These vectors span a parallelepiped \(P(0) \). As time increases or decreases, the flow \(\phi(x,t) \) carries \(P(0) \) into some object. For fixed time, \(\phi \) is a differentiable function of \(x \) (that is, \(\phi \) is a differentiable map of \(\mathbb{R}^3 \) to \(\mathbb{R}^3 \)). When \(\varepsilon \) is small, the image of \(P(0) \) under \(\phi \) can be approximated by its image under the derivative of \(\phi \) with respect to \(x \). Recall that if \(\mathbf{v} \) is a vector based at a point \(P_1 \) and ending at \(P_2 \), so \(\mathbf{v} = P_2 - P_1 \), then \(\phi(P_2,t) - \phi(P_1,t) \approx \mathbf{D}_x \phi(x,t) \cdot \mathbf{v} \). Thus for fixed time and small positive \(\varepsilon \), \(P(0) \) is approximately carried into a parallelepiped spanned by the vectors \(\mathbf{v}_1(t), \mathbf{v}_2(t), \mathbf{v}_3(t) \) given by

\[
\begin{align*}
\mathbf{v}_1(t) &= \mathbf{D}_x \phi(x,t) \cdot \mathbf{v}_1 \\
\mathbf{v}_2(t) &= \mathbf{D}_x \phi(x,t) \cdot \mathbf{v}_2 \\
\mathbf{v}_3(t) &= \mathbf{D}_x \phi(x,t) \cdot \mathbf{v}_3
\end{align*}
\]

Since \(\phi(x,0) = x \) for all \(x \), it follows that \(\mathbf{v}_1(0) = \mathbf{v}_1, \mathbf{v}_2(0) = \mathbf{v}_2 \), and \(\mathbf{v}_3(0) = \mathbf{v}_3 \). In summary, the vectors \(\mathbf{v}_1(t), \mathbf{v}_2(t), \mathbf{v}_3(t) \) span a parallelepiped \(P(t) \) that moves in time (see Figure 4.4.2).

Figure 4.4.2. The moving basis \(\mathbf{v}_1(t), \mathbf{v}_2(t), \mathbf{v}_3(t) \) and the associated parallelepiped.
Let the volume of $P(t)$ be denoted by $V(t)$. The main geometric meaning of divergence is given by the following theorem.

Theorem.

\[
\text{div } F(x) = \frac{1}{V(0)} \left. \frac{d}{dt} V(t) \right|_{t=0}.
\]

Proof. By equation (2) of the previous paragraph,

\[
\frac{d}{dt} v_i(t) = DF(\phi(x, t)) \cdot (D_x \phi(x, t) \cdot v_i)
\]

for $i = 1, 2, 3$. Since $\phi(x, 0) = x$, it follows that $D_x \phi(x, 0)$ is the identity matrix, so that evaluation at $t = 0$ gives

\[
\left. \frac{d}{dt} v_i(t) \right|_{t=0} = DF(x) \cdot v_i.
\]

The volume $V(t)$ is given by the triple product:

\[
V(t) = v_1(t) \cdot [v_2(t) \times v_3(t)].
\]

Using the differentiation rules of §4.1 and the identities

\[
v_1 \cdot [v_2 \times v_3] = v_2 \cdot [v_3 \times v_1] = v_3 \cdot [v_1 \times v_2],
\]

equation (4) gives

\[
\frac{dV}{dt} = \frac{dv_1}{dt} \cdot [v_2(t) \times v_3(t)] + v_1(t) \cdot \left[\frac{dv_2}{dt} \times v_3(t) \right] + v_1(t) \cdot \left[v_2(t) \times \frac{dv_3}{dt} \right]
\]

At $t = 0$, substitution from formula (3) and the facts that

\[
v_1 \times v_2 = \varepsilon v_3, v_3 \times v_1 = \varepsilon v_2 \quad \text{and} \quad v_2 \times v_3 = \varepsilon v_1,
\]

gives

\[
\left. \frac{dV}{dt} \right|_{t=0} = \varepsilon^3 [DF(x)i] \cdot i + \varepsilon^3 [DF(x)j] \cdot j + \varepsilon^3 [DF(x)k] \cdot k.
\]

Since $F = F_1i + F_2j + F_3k$, we get $[DF(x)i] \cdot i = \partial F_1/\partial x$. Similarly, the second and third terms of equation (5) are $\varepsilon^3(\partial F_2/\partial y)$ and $\varepsilon^3(\partial F_3/\partial z)$. Substituting these facts into equation (5) and dividing by $V(0) = \varepsilon^3$ proves the theorem. \[\blacksquare\]
4.4 Flows and the Geometry of the Divergence

The reader who is familiar with a little more linear algebra can prove this generalization of the preceding Theorem: \(^{11}\) Let \(v_1, v_2 \) and \(v_3\) be any three noncoplanar (not necessarily orthonormal) vectors emanating from \(x\) that flow according to the formula

\[v_i(t) = D_x \phi(x, t) \cdot v_i, \quad i = 1, 2, 3. \]

The vectors \(v_1(t), v_2(t), v_3(t)\) span a parallelepiped \(P(t)\) with volume \(V(t)\). Then

\[\frac{1}{V(0)} \frac{dV}{dt} \bigg|_{t=0} = \text{div} \, F(x). \quad (6) \]

In other words, the divergence of \(F\) at \(x\) is the rate at which the volumes change, per unit volume. “Rate” refers to the rate of change with respect to time as the volumes are transported by the flow.

Exercises.

1. If \(f(x,t)\) is a real-valued function of \(x\) and \(t\), define the **material derivative** of \(f\) relative to a vector field \(F\) as

\[\frac{Df}{Dt} = \frac{\partial f}{\partial t} + \nabla f(x) \cdot F. \]

Show that \(Df/Dt\) is the \(t\) derivative of \(f(\phi(x,t),t)\) (i.e., the \(t\) derivative of \(f\) transported by the flow of \(F\)).

2. (a) Assuming uniqueness of the flow lines through a given point at a given time, prove the following property of the flow \(\phi(x, t)\) of a vector field \(F\):

\[\phi(x, t+s) = \phi(\phi(x, s), t). \]

(b) What is the corresponding property for \(D_x \phi\)?

3. Let \(v\) and \(w\) be two vectors emanating from the origin and let them be moved by the derivative of the flow:

\[v(t) = D_x \phi(0, t) v, \quad w(t) = D_x \phi(0, t) w, \]

so that at time \(t = 0\) and at the origin \(0\) in \(\mathbb{R}^3\),

\[\frac{dv}{dt} \bigg|_{t=0} = D_x F(0) \cdot v \quad \text{and} \quad \frac{dw}{dt} \bigg|_{t=0} = D_x F(0) \cdot w. \]

\(^{11}\)The reader will need to know how to write the matrix of a linear transformation with respect to a given basis and be familiar with the fact that the trace of a matrix is independent of the basis.
Show that
\[\frac{d}{dt} \mathbf{v} \cdot \mathbf{w} \bigg|_{t=0} = [\mathbf{D}_\mathbf{x} \mathbf{F}(0) \cdot \mathbf{v}] \cdot \mathbf{w} + \mathbf{v} \cdot [\mathbf{D}_\mathbf{x} \mathbf{F}(0) \cdot \mathbf{w}] \\
= [(\mathbf{D}_\mathbf{x} \mathbf{F}(0) + [\mathbf{D}_\mathbf{x} \mathbf{F}(0)]^T)\mathbf{v}] \cdot \mathbf{w}. \]

4. Any matrix \(A \) can be written (uniquely) as the sum of a symmetric matrix (a matrix \(S \) is symmetric if \(S^T = S \)) and an antisymmetric matrix (\(W^T = -W \)) as follows:
\[
A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T) = S + W.
\]
In particular, for \(A = \mathbf{D}_\mathbf{x} \mathbf{F}(0) \),
\[
S = \frac{1}{2}[[\mathbf{D}_\mathbf{x} \mathbf{F}(0) + [\mathbf{D}_\mathbf{x} \mathbf{F}(0)]^T]
\]
and
\[
W = \frac{1}{2}[[\mathbf{D}_\mathbf{x} \mathbf{F}(0) + [\mathbf{D}_\mathbf{x} \mathbf{F}(0)]^T].
\]
We call \(S \) the deformation matrix and \(W \) the rotation matrix. Show that the entries of \(W \) are determined by
\[
w_{12} = -\frac{1}{2}(\text{curl } \mathbf{F})_3, \quad w_{23} = -\frac{1}{2}(\text{curl } \mathbf{F})_1, \quad \text{and } \quad w_{31} = -\frac{1}{2}(\text{curl } \mathbf{F})_2.
\]

5. Let \(\mathbf{w} = \frac{1}{2}((\bigtriangledown \times \mathbf{F})(0)) \). Assume that axes are chosen so that \(\mathbf{w} \) is parallel to the \(z \) axis and points in the direction of \(\mathbf{k} \). Let \(\mathbf{v} = \mathbf{w} \times \mathbf{r} \), where \(\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \), so that \(\mathbf{v} \) is the velocity field of a rotation about the axis \(\mathbf{w} \) with angular velocity \(\omega = ||\mathbf{w}|| \) and with \(\text{curl } \mathbf{v} = 2\mathbf{w} \). Since \(\mathbf{r} \) is a function of \((x, y, z)\), \(\mathbf{v} \) is also a function of \((x, y, z)\). Show that the derivative of \(\mathbf{v} \) at the origin is given by
\[
\mathbf{Dv}(0) = \mathbf{W} = \begin{bmatrix}
0 & -\omega & 0 \\
\omega & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}.
\]
Interpret the result.

6. Let
\[
\mathbf{V}(x, y, z) = -yi + xj, \quad \mathbf{W}(x, y, z) = \frac{\mathbf{V}(x, y, z)}{(x^2 + y^2)^{1/2}},
\]
and
\[
\mathbf{Y}(x, y, z) = \frac{\mathbf{V}(x, y, z)}{(x^2 + y^2)}.
\]
(a) Compute the divergence and curl of \(\mathbf{V}, \mathbf{W}, \) and \(\mathbf{Y} \).
(b) Find the flow lines of $V, W,$ and Y.

(a) How will a small paddle wheel behave in the flow of each of $V, W,$ and Y.

7. Let $\phi(x, t)$ be the flow of a vector field F. Let x and t be fixed. For small vectors $v_1 = \varepsilon i, v_2 = \varepsilon j$ and $v_3 = \varepsilon k$ emanating from x, let $P(0)$ be the parallelepiped spanned by v_1, v_2, v_3. Argue that for small positive ε, $P(0)$ is carried by the flow to an approximate parallelepiped spanned by $v_1(t), v_2(t), v_3(t)$ given by formula (3).
64 4 Vector Valued Functions
Both the derivative and integral can be based on the notion of a transition point. For example, a function is Riemann integrable when there is a transition point between the lower and upper sums.

Alan Weinstein, 1982

Supplement to §5.2

Alternative Definition of the Integral

There is another approach to the definition of the integral based on step functions that you may want to mention or have some of your better students exposed to; we present this (optional) definition first.

We say that a function \(g(x, y) \) defined in \(R = [a, b] \times [c, d] \) is a step function provided there are partitions

\[
a = x_0 < x_1 < x_2 < \ldots < x_n = b
\]

of the closed interval \([a, b]\) and

\[
c = y_0 < y_1 < y_2 < \ldots < y_m = d
\]

of the closed interval \([c, d]\) such that, in each of the \(mn \) open rectangles

\[
R_{ij} = (x_{i-1}, x_i) \times (y_{j-1}, y_j),
\]
the function \(g(x, y) \) has a constant value \(k_{ij} \). The graph of a generic step function is shown in Figure 5.2.1.

![Graph of g](image)

Figure 5.2.1. The function \(g \) is a step function since it is constant on each subrectangle.

We will define the integral

\[
\iint_R g(x, y) \, dx \, dy
\]

of a step function over a rectangle in such a way that, if \(g(x, y) \geq 0 \) or \(R \), the integral equals the volume of the region \(V \) under the graph. Since the part of \(V \) lying over \(R_{ij} \) has height \(k_{ij} \) and base area \((x_i - x_{i-1})(y_i - y_{i-1})\), the volume of this part is \(k_{ij}(x_i - x_{i-1})(y_i - y_{i-1}) \), or \(k_{ij} \Delta x_i \Delta y_j \) where \(\Delta x_i = x_i - x_{i-1} \) and \(\Delta y_i = y_i - y_{i-1} \) as in one-variable calculus. The volume of \(V \) is the sum of all the \(k_{ij} \Delta x_i \Delta y_j \) as \(i \) ranges from 1 to \(n \) and \(j \) ranges from 1 to \(m \) (making \(nm \) terms in all). We denote this sum by

\[
\sum_{i=1,j=1}^{n,m}.
\]

Using this geometric guide, we define

\[
\iint_R g(x, y) \, dx \, dy = \sum_{i=1,j=1}^{n,m} k_{ij} \Delta x_i \Delta y_j
\]

for every step function \(g \), whether or not its values \(k_{ij} \) are all nonnegative.

Example 1. Let \(g \) take values on the rectangles as shown in Figure 5.2.2. Calculate the integral of \(g \) over the rectangle \(R = [0, 5] \times [0, 3] \).
Solution. The integral of g is the sum of the values of g times the areas of the rectangles:

$$
\iint_{D} g(x, y) \, dx \, dy = -8 \times 2 + 2 \times 3 + 6 \times 2 + 3 \times 3 + 4 \times 2 - 1 \times 3 = 16.
$$

Of course, the functions which we want to integrate are usually not step functions. To define their integrals, we use a comparison method whose origins go back as far as Archimedes.

If $f_1(x, y)$ and $f_2(x, y)$ are any two functions defined on the rectangle R, then any reasonable definition of the double integral of f_2 should be larger than that of f_1 if $f_1(x, y) \leq f_2(x, y)$ everywhere on R. Thus, if f is any function which we wish to integrate over R, and if g and h are step functions on R such that $g(x, y) \leq f(x, y) \leq h(x, y)$ for all (x, y) in R, then the number $\iint_{R} f(x, y) \, dx \, dy$ which we are trying to define must lie between the numbers $\iint_{R} g(x, y) \, dx \, dy$ and $\iint_{R} h(x, y) \, dx \, dy$ which have already been defined. This condition on the integral actually becomes a definition if we rephrase it as follows.

Alternative Definition of the Double Integral. A function f defined on a rectangle R is said to be **integrable** on R if for any positive number ϵ, there exist step functions $g(x, y)$ and $h(x, y)$ with $g(x, y) \leq f(x, y) \leq h(x, y)$ for all (x, y) in R and such that the difference

$$
\iint_{R} h(x, y) \, dx \, dy - \iint_{R} g(x, y) \, dx \, dy
$$

is less than ϵ. We shall call such step functions g and h “surrounding functions”. When this condition holds, it can be shown that there is just one
number I with the property that
\[\int\int_{R} g(x, y) \, dx \, dy \leq I \leq \int\int_{R} h(x, y) \, dx \, dy \]
for surrounding functions \(g \) and \(h \) as above. The number I is called the integral of \(f \) on \(R \) and is denoted by \(\int\int_{R} f(x, y) \, dx \, dy \).

Example 2. Let \(R \) be the rectangle \(0 \leq x \leq 2, 1 \leq y \leq 3 \), and let \(f(x, y) = x^2y \). Choose a step function \(h(x, y) \geq f(x, y) \) to show that \(\int\int_{R} f(x, y) \, dx \, dy \leq 25 \).

Solution. The constant function \(h(x, y) = 12 \geq f(x, y) \) has integral \(12 \times 4 = 48 \), so we get only the crude estimate \(\int\int_{R} f(x, y) \, dx \, dy \leq 48 \). To get a better one, divide \(R \) into four pieces:

\[
R_1 = [0, 1] \times [1, 2], \quad R_3 = [1, 2] \times [1, 2],
\]
\[
R_2 = [0, 1] \times [2, 3], \quad R_4 = [1, 2] \times [2, 3].
\]

Let \(h \) be the function given by taking the maximum value of \(f \) on each subrectangle (evaluated at the upper right-hand corner); that is,

\[
h(x, y) = 2 \text{ on } R_1, 3 \text{ on } R_2, 8 \text{ on } R_3, \text{ and } 12 \text{ on } R_4.
\]

Therefore, the integral of \(h \) is

\[
\int\int_{R} h(x, y) \, dx \, dy = 2 \times 1 + 3 \times 1 + 8 \times 1 + 12 \times 1 = 25.
\]

Since \(h \geq f \), we get

\[
\int\int_{R} f(x, y) \, dx \, dy \leq 25.
\]

Alternative Proof of Reduction to Iterated Integrals. The upper and lower sums approach can also be used to give proof of the reduction to iterated integrals. We give this (optional) proof here. We first treat step functions. Let \(g \) be a step function, with \(g(x, y) = k_{ij} \) on the rectangle \((t_{i-1}, t_i) \times (s_{j-1}, s_j) \), so that

\[
\int\int_{D} g(x, y) \, dx \, dy = \sum_{i=1}^{n} \sum_{j=1}^{m} k_{ij} \Delta t_i \Delta s_j.
\]

If the summands \(k_{ij} \Delta t_i \Delta s_j \) are laid out in a rectangular array, they may be added by first adding along rows and then adding up the subtotals, just as in the text (see Figure 5.2.3):
\[k_{11} \Delta t_1 \Delta s_1 k_{21} \Delta t_2 \Delta s_1 \ldots k_{n1} \Delta t_n \Delta s_2 \rightarrow \left(\sum_{i=1}^{n} k_{i1} \Delta t_i \right) \Delta s_1 \]
\[k_{12} \Delta t_1 \Delta s_2 k_{22} \Delta t_2 \Delta s_2 \ldots k_{n2} \Delta t_n \Delta s_2 \rightarrow \left(\sum_{i=1}^{n} k_{i2} \Delta t_i \right) \Delta s_2 \]
\[\vdots \quad \vdots \quad \vdots \]
\[k_{1m} \Delta t_1 \Delta s_m k_{2m} \Delta t_2 \Delta s_m \ldots k_{nm} \Delta t_n \Delta s_m \rightarrow \left(\sum_{i=1}^{n} k_{im} \Delta t_i \right) \Delta s_m \]
\[\sum_{j=1}^{m} \left(\sum_{i=1}^{n} k_{ij} \Delta t_i \right) \Delta s_j \]

Figure 5.2.3. Reduction to iterated integrals.

The coefficient of \(\Delta s_j \) in the sum over the \(j \)th row, \(\sum_{j=1}^{n} k_{ij} \Delta t_i \), is equal to \(\int_a^b g(x, y)dx \) for any \(y \) with \(s_{j-1} < y < s_j \), since, for \(y \) fixed, \(g(x, y) \) is a step function of \(x \). Thus, the integral \(\int_a^b g(x, y)dx \) is a step function of \(y \), and its integral with respect to \(y \) is the sum:

\[\int_c^d \left[\int_a^b g(x, y)dx \right] dy = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} k_{ij} \Delta t_i \right) \Delta s_j = \int_D g(x, y)dx \, dy. \]

Similarly, by summing first over columns and then over rows, we obtain

\[\int_D g(x, y)dx \, dy = \int_a^b \left[\int_c^d g(x, y)dy \right] dx. \]

The theorem is therefore true for step functions.

Now let \(f \) be integrable on \(D = [a, b] \times [c, d] \) and assume that the iterated integral \(\int_a^b \left[\int_c^d f(x, y)dy \right] dx \) exists. Denoting this integral by \(S_0 \), we will show that every lower sum for \(f \) on \(D \) is less than or equal to \(S_0 \), while every upper sum is greater than or equal to \(S_0 \), so \(S_0 \) must be the integral of \(f \) over \(D \).

To carry out our program, let \(g \) be any step function such that

\[g(x, y) \leq f(x, y) \] \hspace{1cm} (1)
for all \((x, y)\) in \(D\). Integrating (1) with respect to \(y\) and using “monotonicity” of the one-variable integral, we obtain
\[
\int_c^d g(x, y)dy \leq \int_c^d f(x, y)dy
\]
(2)
for all \(x \in [a, b]\). Integrating (2) with respect to \(x\) and applying monotonicity once more gives
\[
\int_a^b \left[\int_c^d g(x, y)dy \right] dx \leq \int_a^b \left[\int_c^d f(x, y)dy \right] dx.
\]
(3)
Since \(g\) is a step function, it follows from the first part of this proof that the left-hand side of (3) is equal to the lower sum \(\iint_D g(x, y)dx\,dy\); the right-hand side of (3) is just \(S_0\), so we have shown that every lower sum is less than or equal to \(S_0\). The proof that every upper sum is greater than or equal to \(S_0\) is similar, and so we are done. \(\blacksquare\)
§5.6 Technical Integration Theorems

This section provides the main ideas of the proofs of the existence and additivity of the integral that were stated in §5.2 of the text. These proofs require more advanced concepts than those needed for the rest of this chapter.

Uniform Continuity. The notions of uniform continuity and the completeness of the real numbers, both of which are usually treated more fully in a junior-level course in mathematical analysis or real-variable theory, are called upon here.

Definition. Let $D \subset \mathbb{R}^n$ and $f : D \to \mathbb{R}$. Recall that f is said to be continuous at $x_0 \in D$ provided that for all $\varepsilon > 0$ there is a number $\delta > 0$ such that if $x \in D$ and $\|x - x_0\| < \delta$, then $\|f(x) - f(x_0)\| < \varepsilon$. We say f is continuous on D if it is continuous at each point of D.

The function f is said to be uniformly continuous on D if for every number $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $x, y \in D$ and $\|x - y\| < \delta$, then $\|f(x) - f(y)\| < \varepsilon$.

The main difference between continuity and uniform continuity is that for continuity, δ can depend on x_0 as well as ε, whereas in uniform continuity δ depends only on ε. Thus any uniformly continuous function is also continuous. An example of a function that is continuous but not uniformly continuous is given in Exercise 2 in this supplement. The distinction between the notions of continuity and uniform continuity can be rephrased: For a function f that is continuous but not uniformly continuous, δ cannot be chosen independently of the point of the domain (the x_0 in the definition). The definition of uniform continuity states explicitly that once you are given an $\varepsilon > 0$, a δ can be found independent of any point of D.

Recall from §3.3 that a set $D \subset \mathbb{R}^n$ is bounded if there exists a number $M > 0$ such that $\|x\| \leq M$ for all $x \in D$. A set is closed if it contains all its boundary points. Thus a set is bounded if it can be strictly contained in some (large) ball. The next theorem states that under some conditions a continuous function is actually uniformly continuous.

Theorem. The Uniform Continuity Principle. Every function that is continuous on a closed and bounded set D in \mathbb{R}^n is uniformly continuous on D.

The proof of this theorem will take us too far afield; however, we can prove a special case of it, which is, in fact, sufficient for many situations relevant to this text.

Proof of a special case. Let us assume that \(D = [a, b] \) is a closed interval on the line, that \(f : D \to \mathbb{R} \) is continuous, that \(df/dx \) exists on the open interval \((a, b)\), and that \(df/dx \) is bounded (that is, there is a constant \(C > 0 \) such that \(|df(x)/dx| \leq C \) for all \(x \) in \((a, b)\)). To show that these conditions imply \(f \) is uniformly continuous, we use the mean value theorem as follows:

Let \(\varepsilon > 0 \) be given and let \(x \) and \(y \) lie on \(D \). Then by the mean value theorem,

\[
f(x) - f(y) = f'(c)(x - y)
\]

for some \(c \) between \(x \) and \(y \). By the assumed boundedness of the derivative,

\[
|f(x) - f(y)| \leq C|x - y|.
\]

Let \(\delta = \varepsilon/C \). If \(|x - y| < \delta \), then

\[
|f(x) - f(y)| < C\varepsilon = \varepsilon.
\]

Thus \(f \) is uniformly continuous. (Note that \(\delta \) depends on neither \(x \) nor \(y \), which is a crucial part of the definition.)

This proof also works for regions in \(\mathbb{R}^n \) that are convex; that is, for any two points \(x, y \) in \(D \), the line segment \(c(t) = tx + (1 - t)y, 0 \leq t \leq 1 \), joining them also lies in \(D \). We assume \(f \) is differentiable (on an open set containing \(D \)) and that \(\|\nabla f(x)\| \leq C \) for a constant \(C \). Then the mean value theorem applied to the function \(h(t) = f(c(t)) \) gives a point \(t_0 \) such that

\[
h(1) - h(0) = [h'(t_0)][1 - 0]
\]

or

\[
f(x) - f(y) - h'(t_0) = \nabla f(c(t_0)) \cdot c'(t_0) = \nabla f(c(t_0)) \cdot (x - y)
\]

by the chain rule. Thus by the Cauchy-Schwartz inequality,

\[
|f(x) - f(y)| \leq \|\nabla f(c(t_0))\|\|x - y\| \leq C\|x - y\|.
\]

Then, as above, given \(\varepsilon > 0 \), we can let \(\delta = \varepsilon/C \). ■

Completeness. We now move on to the notion of a Cauchy sequence of real numbers. In the definition of Riemann sums we obtained a sequence of numbers \(\{S_n\}, n = 1, \ldots \). It would be nice if we could say that this sequence of numbers converges to \(S \) (or has a limit \(S \)), but how can we obtain such a limit? In the abstract setting, we know no more about \(S_n \) than that it is the Riemann sum of a (say, continuous) function, and, although this has not yet been proved, it should be enough information to ensure its convergence.

Thus we must determine a property for sequences that guarantees their convergence. We shall define a class of sequences called Cauchy sequences, and then take as an axiom of the real number system that all such sequences
converge to a limit. The determination in the nineteenth century that such an axiom was necessary for the foundations of calculus was a major breakthrough in the history of mathematics and paved the way for the modern rigorous approach to mathematical analysis. We shall say more this shortly.

Definition. A sequence of real numbers \(\{S_n\}, n = 1, \ldots \), is said to satisfy the **Cauchy criterion** if for every \(\varepsilon > 0 \) there exists an \(N \) such that for all \(m, n \geq N \), we have \(|S_n - S_m| < \varepsilon \).

If a sequence \(S_n \) converges to a limit \(S \), then \(S_n \) is a Cauchy sequence. To see this, we use the definition: For every \(\varepsilon > 0 \) there is an \(N \) such that for all \(n \geq N \), \(|S_n - S| < \varepsilon/2 \) (use the definition with \(\varepsilon/2 \) in place of \(\varepsilon \)). Then if \(n, m \geq N_1 \),

\[
|S_n - S_m| = |S_n - S + S - S_m| \leq |S_n - S| + |S - S_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,
\]

which proves our contention. The completeness axiom asserts that the converse is true as well:

Completeness Axiom of the Real Number. Every Cauchy sequence \(\{S_n\} \) converges to some limit \(S \).

Historical Note. Augustin Louis Cauchy (1789–1857), one of the greatest mathematicians of all time, defined what we now call Cauchy sequences in his *Cours d’analyse*, published in 1821. This book was a basic work on the foundations of analysis, although it would be considered somewhat loosely written by the standards of our time. Cauchy knew that a convergent sequence was “Cauchy” and remarked that a Cauchy sequence converges. He did not have a proof, nor could he have had one, since such a proof depends on the rigorous development of the real number system that was achieved only in 1872 by the German mathematician Georg Cantor (1845-1918).

It is now clear what we must do to ensure that the Riemann sums \(\{S_n\} \) of, say, a continuous function on a rectangle converge to some limit \(S \), which would prove that continuous functions on rectangles are integrable: **we must show that \(\{S_n\} \) is a Cauchy sequence.** In demonstrating this, we use the uniform continuity principle. The integrability of continuous functions will be a consequence of the following two lemmas.

Lemma 1. Let \(f \) be a continuous function on a rectangle \(R \) in the plane, and let \(\{S_n\} \) be a sequence of Riemann sums for \(f \). Then \(\{S_n\} \) converges to some number \(S \).
Proof. Given a rectangle \(R \subset \mathbb{R}^2 \), \(R = [a, b] \times [c, d] \), we have the regular partition of \(R \), \(a = x_0 < x_1 < \cdots < x_n = b \), \(c = y_0 < y_1 < \cdots < y_n = d \), discussed in §5.2 of the text. Recall that
\[
\Delta x = x_{j+1} - x_j = \frac{b - a}{n}, \quad \Delta y = y_{k+1} - y_k = \frac{d - c}{n},
\]
and
\[
S_n = \sum_{j,k=0}^{n-1} f(c_{jk}) \Delta x \Delta y,
\]
where \(c_{jk} \) is an arbitrarily chosen point in \(R_{jk} = [x_j, x_{j+1}] \times [y_k, y_{k+1}] \).

The sequence \(\{S_n\} \) is determined only by the selection of the points \(c_{jk} \).

For the purpose of the proof we shall introduce a slightly more complicated but very precise notation: we set
\[
\Delta x^n = \frac{b - a}{n} \quad \text{and} \quad \Delta y^n = \frac{d - c}{n}.
\]

With this notation we have
\[
S_n = \sum_{j,k}^{n-1} f(c_{jk}) \Delta x^n \Delta y^n. \quad (1)
\]

To show that \(\{S_n\} \) satisfies the Cauchy criterion, we must show that given \(\varepsilon > 0 \) there exists an \(N \) such that for all \(n, m \geq N \), \(|S_n - S_m| \leq \varepsilon \).

By the uniform continuity principle, \(f \) is uniformly continuous on \(R \). Thus given \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that when \(x, y \in R \), \(||x - y|| < \delta \), then \(|f(x) - f(y)| < \varepsilon / [2 \cdot \text{area}(R)] \) (the quantity \(\varepsilon / [2 \cdot \text{area}(R)] \) is used in place of \(\varepsilon \) in the definition). Let \(N \) be so large that for any \(m \geq N \) the diameter (length of a diagonal) of any subrectangle \(R_{jk} \) in the \(m \)th regular partition of \(R \) is less than \(\delta \). Thus if \(x, y \) are points in the same subrectangle, we will have the inequality \(|f(x) - f(y)| < \varepsilon / [2 \cdot \text{area}(R)] \).

Fix \(m, n \geq N \). We will show that \(|S_n - S_m| < \varepsilon \). This shows that \(\{S_n\} \) is a Cauchy sequence and hence converges. Consider the \(mn \)th \((m \text{ times } n)\)th regular partition of \(R \). Then
\[
S_{mn} = \sum_{r,t} f(\tilde{c}_{rt}) \Delta x^{rn} \Delta y^{mn},
\]
where \(\tilde{c}_{rt} \) is a point in the \(rt \)th subrectangle. Note that each subrectangle of the \(mn \)th partition is a subrectangle of both the \(m \)th and the \(n \)th regular partitions (see Figure 5.6.1).

Let us denote the subrectangles in the \(mn \)th subdivision by \(\tilde{R}_{rt} \) and those in the \(n \)th subdivision by \(R_{jk} \). Thus each \(\tilde{R}_{rt} \subset R_{jk} \) for some \(jk \), and hence we can rewrite formula (1) as
\[
S_n = \sum_{j,k}^{n-1} \left(\sum_{\tilde{R}_{rt} \subset R_{jk}} f(c_{jk}) \Delta x^{mn} \Delta y^{mn} \right). \quad (1')
\]
Here we are using the fact that

\[
\sum_{\tilde{R}_{rt} \subset R_{jk}} f(c_{jk}) \Delta x^{mn} \Delta y^{mn} = f(c_{jk}) \Delta x^{n} \Delta y^{n},
\]

where the sum is taken over all subrectangles in the \(mn\)th subdivision contained in a \(fixed\) rectangle \(R_{jk}\) in the \(n\)th subdivision. We also have the identity

\[
S_{mn} = \sum_{r,t} f(\tilde{c}_{rt}) \Delta x^{mn} \Delta y^{mn}. \tag{2}
\]

This relation can also be rewritten as

\[
S_{mn} = \sum_{j,k} \sum_{\tilde{R}_{rt} \subset R_{jk}} f(\tilde{c}_{rt}) \Delta x^{mn} \Delta y^{mn}. \tag{2'}
\]

where in equation \(2'\) we are first summing over those subrectangles in the \(mn\)th partition contained in a \(fixed\) \(R_{jk}\) and then summing over \(j,k\).

Subtracting equation \(2'\) from equation \(1'\), we get

\[
|S_n - S_{mn}| = \left| \sum_{j,k} \sum_{\tilde{R}_{rt} \subset R_{jk}} [f(c_{jk}) \Delta x^{mn} \Delta y^{mn} - f(\tilde{c}_{rt}) \Delta x^{mn} \Delta y^{mn}] \right| \leq \sum_{j,k} \sum_{\tilde{R}_{rt} \subset R_{jk}} |f(c_{jk}) - f(\tilde{c}_{rt})| \Delta x^{mn} \Delta y^{mn}.
\]
By our choice of δ and N, $|f(e_{jk}) - f(\bar{e}_{jk})| < \varepsilon/[2 \text{area}(R)]$, and consequently the above inequality becomes

$$|S_n - S_{mn}| \leq \sum_{j,k} \sum_{R_{jk} \subset R} \frac{\varepsilon}{2 \text{area}(R)} \Delta x^m \Delta y^n = \frac{\varepsilon}{2}.$$

Thus, $|S_n - S_{mn}| < \varepsilon/2$ and similarly one shows that $|S_n - S_{mn}| < \varepsilon/2$. Since $|S_n - S_m| = |S_n - S_{mn} + S_{mn} - S_m| \leq |S_n - S_{mn}| + |S_{mn} - S_m| < \varepsilon$ for $m, n \geq N$, we have shown $\{S_n\}$ satisfies the Cauchy criterion and thus has a limit S.

We have already remarked that each Riemann sum depends on the selection of a collection of points c_{jk}. In order to show that a continuous function on a rectangle R is integrable, we must further demonstrate that the limit S we obtained in Lemma 1 is independent of the choices of the points c_{jk}.

Lemma 2. The limit S in Lemma 1 does not depend on the choice of points c_{jk}.

Proof. Suppose we have two sequences of Riemann sums $\{S_n\}$ and $\{S_n^*\}$ obtained by selecting two different sets of points, say c_{jk} and c_{jk}^* in each nth partition. By Lemma 1 we know that $\{S_n\}$ converges to some number S and $\{S_n^*\}$ must also converge to some number, say S^*. We want to show that $S = S^*$ and shall do this by showing that given any $\varepsilon > 0$, $|S - S^*| < \varepsilon$, which implies that S must be equal to S^* (why?).

To start, we know that f is uniformly continuous on R. Consequently, given $\varepsilon > 0$, there exists a δ such that $|f(x) - f(y)| < \varepsilon/[3 \text{area}(R)]$ whenever $\|x - y\| < \delta$. We choose N so large that whenever $n \geq N$ the diameter of each subrectangle in the nth regular partition is less than δ. Since $\lim_{n \to \infty} S_n = S$ and $\lim_{n \to \infty} S_n^* = S^*$, we can assume that N has been chosen so large that $n \geq N$ implies that $|S_n - S| < \varepsilon/3$ and $|S_n^* - S^*| < \varepsilon/3$. Also, for $n \geq N$ we know by uniform continuity that if c_{jk} and c_{jk}^* are points in the same subrectangle R_{jk} of the nth partition, then $|f(c_{jk}) - f(c_{jk}^*)| < \varepsilon/[3 \text{area}(R)]$. Thus

$$|S_n - S_n^*| = \left| \sum_{j,k} f(c_{jk}) \Delta x^n \Delta y^n - \sum_{j,k} f(c_{jk}^*) \Delta x^n \Delta y^n \right|
\leq \sum_{j,k} |f(c_{jk}) - f(c_{jk}^*)| \Delta x^n \Delta y^n < \frac{\varepsilon}{3},$$

We now write

$$|S - S^*| = |S - S_n + S_n - S_n^* + S_n^* - S^*| \leq |S - S_n| + |S_n - S_n^*| + |S_n^* - S^*| < \varepsilon$$
and so the lemma is proved.

Putting lemmas 1 and 2 together proves Theorem 1 of §5.2 of the main text:

Theorem 1 of §5.2 of the Text. Any continuous function defined on a rectangle \(R \) is integrable.

Historical Note. Cauchy presented the first published proof of this theorem in his résumé of 1823, in which he points out the need to prove the existence of the integral as a limit of a sum. In this paper he first treats continuous functions (as we are doing now), but on an interval \([a, b]\). (The proof is essentially the same.) However, his proof was not rigorous, since it lacked the notion of uniform continuity, which was not available at that time.

The notion of a Riemann sum \(S_n \) for a function \(f \) certainly predates Bernhard Riemann (1826–1866). The sums are probably named after him because he developed a theoretical approach to the study of integration in a fundamental paper on trigonometric series in 1854. His approach, although later generalized by Darboux (1875) and Stieltjes (1894), was to last more than half a century until it was augmented by the theory Lebesque presented to the mathematical world in 1902. This latter approach to integration theory is generally studied in graduate courses in mathematics.

The proof of Theorem 2 of §5.2 is left to the reader in Exercises 4 to 6 at the end of this section. The main ideas are essentially contained in the proof of Theorem 1.

Additivity Theorem. Our next goal will be to present a proof of property (iv) of the integral from §5.2, namely, its additivity. However, because of some technical difficulties in establishing this result in its full generality, we shall prove it only in the case in which \(f \) is continuous.

Theorem. Additivity of the Integral. Let \(R_1 \) and \(R_2 \) be two disjoint rectangles (rectangles whose intersection contains no rectangle) such that \(Q = R_1 \cup R_2 \) is again a rectangle as in Figure 5.6.2. If \(f \) is a function that is continuous over \(Q \) and hence over each \(R_i \), then

\[
\int_Q f = \int_{R_1} f + \int_{R_2} f.
\]

Proof. The proof depends on the ideas that have already been presented in the proof of Theorem 1.

The fact that \(f \) is integrable over \(Q, R_1, \) and \(R_2 \) follows from Theorem 1. Thus all three integrals in equation (3) exist, and it is necessary only to establish equality.
Without loss of generality we can assume that
\[R_1 = [a, b_1] \times [c, d] \quad \text{and} \quad R_2 = [b_1, b] \times [c, d] \]
(see Figure 5.6.2). Again we must develop some notation. Let
\[
\Delta x_1^n = \frac{b_1 - a}{n}, \quad \Delta x_2^n = \frac{b - b_1}{n}, \quad \Delta x^n = \frac{b - a}{n}, \quad \text{and} \quad \Delta y^n = \frac{d - c}{n}.
\]

Let
\[
S_1^n = \sum_{j,k} f(c_{jk}^1) \Delta x_1^n \Delta y^n \quad (4)
\]
\[
S_2^n = \sum_{j,k} f(c_{jk}^2) \Delta x_2^n \Delta y^n \quad (5)
\]
\[
S_n = \sum_{j,k} f(c_{jk}) \Delta x^n \Delta y^n \quad (6)
\]
where \(c_{jk}^1, c_{jk}^2, \) and \(c_{jk}\) are points in the \(jk\)th subrectangle of the \(n\)th regular partition of \(R_1, R_2,\) and \(Q,\) respectively. Let \(S^i = \lim_{n \to \infty} S_n^i,\) where \(i = 1, 2,\) and \(S = \lim_{n \to \infty} S_n.\) It must be shown that \(S = S^1 + S^2,\) which we will accomplish by showing that for arbitrary \(\varepsilon > 0,|S - S^1 - S^2| < \varepsilon.\)

By the uniform continuity of \(f\) on \(Q\) we know that given \(\varepsilon > 0\) there is a \(\delta > 0\) such that whenever \(\|x - y\| < \delta,|f(x) - f(y)| < \varepsilon.\) Let \(N\) be so big that for all \(n \geq N,|S_n - S| < \varepsilon/3,|S_n^i - S^i| < \varepsilon/3, i = 1, 2,\) and if
x, y are any two points in any subrectangle of the nth partition of either \(R_1, R_2 \), or \(Q \) then \(|f(x) - f(y)| < \varepsilon/3 \text{area}(Q) \). Let us consider the nth regular partition of \(R_1, R_2 \), and \(Q \). These form a collection of subrectangles that we shall denote by \(R_{jk}^1, R_{jk}^2, R_{jk} \), respectively [see Figures 5.6.2 and 5.6.3(a)].

![Figure 5.6.3](image)

Figure 5.6.3. (a) A regular partition of \(Q \). (b) The vertical and horizontal lines of this subdivision are obtained by taking the union of the vertical and horizontal of Figures 5.6.2 and 5.6.3(a).

If we superimpose the subdivision of \(Q \) on the nth subdivisions of \(R_1 \) and \(R_2 \), we get a new collection of rectangles, say \(\bar{R}_{\alpha\beta}, \beta = 1, \ldots, n \) and \(\alpha = 1, \ldots, m \), where \(m > n \); see Figure 5.6.3(b).

Each \(\bar{R}_{\alpha\beta} \) is contained in some subrectangle \(R_{jk} \) of \(Q \) and in some subrectangle of the nth partition of either \(R_1 \) or \(R_2 \). Consider equalities (4),
80 5 Double and Triple Integrals

(5), and (6) above. These can be rewritten as

\[S_n = \sum_{j,k} \sum_{\tilde{R}_{\alpha\beta} \subset R_i} f(c^i_{jk}) \text{area}(\tilde{R}_{\alpha\beta}) = \sum_{\alpha,\beta} f(\tilde{c}_{\alpha\beta}) \text{area}(\tilde{R}_{\alpha\beta}). \]

where \(\tilde{c}_{\alpha\beta} = c^i_{\alpha\beta} \) if \(\tilde{R}_{\alpha\beta} \subset R^i_{jk}, i = 1, 2, \)

\[S_n = \sum_{j,k} \sum_{\tilde{R}_{\alpha\beta} \subset R_{jk}} f(c^*_{\alpha\beta}) \text{area}(\tilde{R}_{\alpha\beta}) = \sum_{\alpha,\beta} f(c^*_{\alpha\beta}) \text{area}(\tilde{R}_{\alpha\beta}). \]

where \(c^*_{\alpha\beta} = c^i_{j,k} \) if \(\tilde{R}_{\alpha\beta} \subset R_{jk}. \)

For the reader encountering such index notation for the first time, we point out that

\[\sum_{\alpha,\beta} \tilde{R}_{\alpha\beta} \subset R_i \]

means that the summation is taken over those \(\alpha \)'s and \(\beta \)'s such that the corresponding rectangle \(\tilde{R}_{\alpha\beta} \) is contained in the rectangle \(R_i. \)

Now the sum for \(S_n \) can be split into two parts:

\[S_n = \sum_{\tilde{R}_{\alpha\beta} \subset R_{1}} f(c^*_{\alpha\beta}) \text{area}(\tilde{R}_{\alpha\beta}) + \sum_{\tilde{R}_{\alpha\beta} \subset R_{2}} f(c^*_{\alpha\beta}) \text{area}(\tilde{R}_{\alpha\beta}). \]

From these representations and the triangle inequality, it follows that

\[|S_n - S^1_n - S^2_n| \leq \sum_{\tilde{R}_{\alpha\beta} \subset R_{1}} |f(c^*_{\alpha\beta}) - f(\tilde{c}_{\alpha\beta})| \text{area}(\tilde{R}_{\alpha\beta}) \]

\[+ \sum_{\tilde{R}_{\alpha\beta} \subset R_{2}} |f(c^*_{\alpha\beta}) - f(\tilde{c}_{\alpha\beta})| \text{area}(\tilde{R}_{\alpha\beta}) \]

\[\leq \frac{\varepsilon}{3} \sum_{\tilde{R}_{\alpha\beta} \subset R_{1}} \text{area}(\tilde{R}_{\alpha\beta}) \]

\[+ \frac{\varepsilon}{3} \sum_{\tilde{R}_{\alpha\beta} \subset R_{2}} \text{area}(\tilde{R}_{\alpha\beta}) < \varepsilon / 3. \]

In this step we used the uniform continuity of \(f. \) Thus \(|S_n - S^1_n - S^2_n| < \varepsilon / 3 \)

for \(\geq N. \) But

\[|S - S_n| < \frac{\varepsilon}{3}, \ |S^1_n - S^1| < \frac{\varepsilon}{3} \text{ and } |S^2_n - S^2| < \frac{\varepsilon}{3}. \]
As in Lemma 2, an application of the triangle inequality shows that $|S - S^1 - S^2| < \varepsilon$, which completes the proof.

Example 6. Let C be the graph of a continuous function $\phi : [a, b] \to \mathbb{R}$. Let $\varepsilon > 0$ be any positive number. Show that C can be placed in a finite union of boxes $B_i = [a_i, b_i] \times [c_i, d_i]$ such that C does not contain a boundary point of $\bigcup B_i$ and such that $\sum \text{area}(B_i) \leq \varepsilon$.

Solution. Let $\varepsilon > 0$. Since f is uniformly continuous there exists a δ, with $0 < \delta < 1$ such that if $|x - \omega| < \delta$, then $|f(x) - f(\omega)| < \varepsilon / 32$. (We see why the “32” as we proceed) — of course in reality one does a sketch of the idea first and through a trial run one “discovers” that the right number to put here is indeed 32. Let $n > 1/\delta$ and subdivide the interval $[a, b]$ into $2n$ equal parts with $x_0 < x_1 < \ldots < x_{2n}$ the corresponding partition. Let B_i be the rectangle centered at $(x_i, f(x_i))$ with width $1/n$ and height $\varepsilon / 4$. The area of each rectangle is $\varepsilon / 4n$. There are $(2n + 1)$ such rectangles for a total area of $\left(\frac{\varepsilon}{4n}\right)(2n + 1) = \frac{\varepsilon}{2} + \frac{\varepsilon}{2n} < \varepsilon$.

It remains only to check that C does not contain a boundary point of $\bigcup B_i$. If the graph touches the top edge of some Box B_i, then there is some $(x, f(x)) \in B_i$ such that $|f(x) - f(x_i)| \geq \varepsilon / 8$ ($\varepsilon / 8$ is half the height of B_i). But by uniform continuity $|f(x) - f(x_i)| < \varepsilon / 32$ a contradiction.

Similarly if C intersects a vertical side of B_i it must do so in a portion which is in the complement of $B_{i-1} \cup B_{i+1}$. This again contradicts uniform continuity.

Exercises.

1. Show that if a and b are two numbers such that for any $\varepsilon > 0$, $|a - b| < \varepsilon$, then $a = b$.

2. (a) Let f be the function on the half-open interval $(0, 1]$ defined by $f(x) = 1/x$. Show that f is continuous at every point of $(0, 1]$ but not uniformly continuous.

(b) Generalize this example to \mathbb{R}^2.

3. Let R be the rectangle $[a, b] \times [c, d]$ and f be a bounded function that is integrable over R.

(a) Show that f is integrable over $[(a + b)/2, b] \times [c, d]$.

(b) Let N be any positive integer. Show that f is integrable over $[(a + b)/N, b] \times [c, d]$.

Exercises 4 to 6 are intended to give a proof of Theorem 2 of \S 5.2.
4. Let C be the graph of a continuous function $\phi : [a, b] \to \mathbb{R}$. Let $\varepsilon > 0$ be any positive number. Show that C can be placed in a finite union of boxes $B_i = [a_i, b_i] \times [c_i, d_i]$ such that C does not contain a boundary point of $\bigcup B_i$ and such that $\Sigma \text{ area } (B_i) \leq \varepsilon$. (Hint: Use the uniform continuity principle presented in this section.)

5. Let R and B be rectangles and let $B \subset R$. Consider the nth regular partition of R and let b_n be the sum of the areas of all rectangles in the partition that have a nonempty intersection with B. Show that $\lim_{n \to \infty} b_n = \text{area}(B)$.

6. Let R be a rectangle and $C \subset R$ the graph of a continuous function ϕ. Suppose that $f : R \to \mathbb{R}$ is bounded and continuous except on C. Use Exercises 4 and 5 above and the techniques used in the proof of Theorem 1 of this section to show that f is integrable over R.

7. (a) Use the uniform continuity principle to show that if $\phi : [a, b] \to \mathbb{R}$ is a continuous function, then ϕ is bounded.

(b) Generalize part (a) to show that a given continuous function $f : [a, b] \times [c, d] \to \mathbb{R}$ is bounded.

(c) Generalize part (b) still further to show that if $f : D \to \mathbb{R}$ is a continuous function on a closed and bounded set $D \subset \mathbb{R}^n$, then f is bounded.
To complete his Habilitation, Riemann had to give a lecture. He prepared three lectures, two on electricity and one on geometry. Gauss had to choose one of the three for Riemann to deliver and, against Riemann’s expectations, Gauss (his advisor) chose the lecture on geometry. Riemann’s lecture Über die Hypothesen welche der Geometrie zu Grunde liegen (On the hypotheses that lie at the foundations of geometry), delivered on 10 June 1854, became a classic of mathematics.

There were two parts to Riemann’s lecture. In the first part he posed the problem of how to define an n-dimensional space and ended up giving a definition of what today we call a Riemannian space. Freudenthal writes:

It possesses shortest lines, now called geodesics, which resemble ordinary straight lines. In fact, at first approximation in a geodesic coordinate system such a metric is flat Euclidean, in the same way that a curved surface up to higher-order terms looks like its tangent plane. Beings living on the surface may discover the curvature of their world and compute it at any point as a consequence of observed deviations from Pythagoras’ theorem.

In fact the main point of this part of Riemann’s lecture was the definition of the curvature tensor. The second part of Riemann’s lecture posed deep questions about the relationship of geometry to the world we live in. He asked what the dimension
of real space was and what geometry described real space. The lecture was too far ahead of its time to be appreciated by most scientists of that time. Monastyrsky writes:

Among Riemann’s audience, only Gauss was able to appreciate the depth of Riemann’s thoughts. ... The lecture exceeded all his expectations and greatly surprised him. Returning to the faculty meeting, he spoke with the greatest praise and rare enthusiasm to Wilhelm Weber about the depth of the thoughts that Riemann had presented.

It was not fully understood until sixty years later. Freudenthal writes:

The general theory of relativity splendidly justified his work. In the mathematical apparatus developed from Riemann’s address, Einstein found the frame to fit his physical ideas, his cosmology, and cosmogony: and the spirit of Riemann’s address was just what physics needed: the metric structure determined by data.

From the Riemann website
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Riemann.html

Supplement 6.2A
A Challenging Example

Example. Evaluate

$$\int\int_R \sqrt{x^2 + y^2} \, dx \, dy,$$

where $R = [0, 1] \times [0, 1]$.

Solution. This double integral is equal to the volume of the region under the graph of the function

$$f(x, y) = \sqrt{x^2 + y^2}$$

over the rectangle $R = [0, 1] \times [0, 1]$; that is, it equals the volume of the three-dimensional region shown in Figure 6.1.1.
As it stands, this integral is difficult to evaluate. Since the integrand
is a simple function of \(r^2 = x^2 + y^2 \), we might try a change of variables
to polar coordinates. This will result in a simplification of the integrand
but, unfortunately, not in the domain of the integration. However, the
simplification is sufficient to enable us to evaluate the integral. To apply
Theorem 2 of the text with polar coordinates, refer to Figure 6.1.2.
The reader can verify that R is the image under $T(r, \theta) = (r \cos \theta, r \sin \theta)$ of the region $D^* = D_1^* \cup D_2^*$ where for D_1^* we have $0 \leq \theta \leq \frac{1}{2}\pi$ and $0 \leq r \leq \sec \theta$; for D_2^* we have $\frac{1}{2}\pi \leq \theta \leq \frac{3}{2}\pi$ and $0 \leq r \leq \csc \theta$. The transformation T sends D_1^* onto a triangle T_1 and D_2^* onto a triangle T_2. The transformation T is one-to-one except when $r = 0$, and so we can apply Theorem 2. From the symmetry of $z = \sqrt{x^2 + y^2}$ on R, we can see that
\[
\iint_R \sqrt{x^2 + y^2} \, dx \, dy = 2 \iint_{T_1} \sqrt{x^2 + y^2} \, dx \, dy.
\]
Changing to polar coordinates, we obtain
\[
\iint_{T_1} \sqrt{x^2 + y^2} \, dx \, dy = \iint_{D_1^*} \sqrt{r^2} \, dr \, d\theta = \iint_{D_1^*} r^2 \, dr \, d\theta.
\]
Next we use iterated integration to obtain
\[
\iint_{D_1^*} r^2 \, dr \, d\theta = \int_0^{\pi/4} \left[\int_0^{\sec \theta} r^2 \, dr \right] \, d\theta = \frac{1}{3} \int_0^{\pi/4} \sec^3 \theta \, d\theta.
\]
Consulting a table of integrals (see the back of the book) to find $\int \sec^3 x \, dx$, we have
\[
\int_0^{\pi/4} \sec^3 \theta \, d\theta = \frac{1}{2} \left[\sec \theta \tan \theta \right]_0^{\pi/4} + \frac{1}{2} \int_0^{\pi/4} \sec \theta \, d\theta = \frac{\sqrt{2}}{2} + \frac{1}{2} \int_0^{\pi/4} \sec^3 \theta \, d\theta.
\]
Consulting the table again for $\int \sec x \, dx$, we find
\[
\frac{1}{2} \int_0^{\pi/4} \sec \theta \, d\theta = \frac{1}{2} \frac{1}{2} \left[\log |\sec \theta + \tan \theta| \right]_0^{\pi/4} = \frac{1}{2} \log(1 + \sqrt{2}).
\]
Combining these results and recalling the factor $\frac{1}{3}$, we obtain
\[
\iint_{D_1^*} r^2 \, dr \, d\theta = \frac{1}{3} \left[\frac{\sqrt{2}}{2} + \frac{1}{2} \log(1 + \sqrt{2}) \right] = \frac{1}{6} [\sqrt{2} + \log(1 + \sqrt{2})].
\]
Multiplying by 2, we obtain the answer
\[
\iint_R \sqrt{x^2 + y^2} \, dx \, dy = \frac{1}{3} [\sqrt{2} + \log(1 + \sqrt{2})].
\]

Instead of using the substitution T, one can alternatively divide the original square into two triangles T_1 and T_2 as in the text, write the integral over T_1 as a double integral (first with respect to y, then with respect to x); in the integral over y, substitute $y = xv$, then use the standard integral number 43 at the back of the book.
Here is another example of the use of the change of variables theorem.

Exercise 15 Evaluate

\[\int \int_B \exp \left(\frac{y-x}{y+x} \right) \, dx \, dy \]

where \(B \) is the inside of the triangle with vertices at \((0, 0), (0, 1) \) and \((1, 0)\).

Solution. Using the change of variables \(u = y - x, v = y + x \), we get |\(\partial(x, y) / \partial(u, v) \)| = 1/2. Thus,

\[
\int \int_B \exp \left(\frac{y-x}{y+x} \right) \, dx \, dy = \int \int_{B'} \exp \left(\frac{u}{v} \right) \frac{1}{2} \, du \, dv \\
= \frac{1}{2} \int_0^1 \int_{-v}^v \exp \left(\frac{u}{v} \right) \, du \, dv \\
= \frac{1}{2} \int_0^1 \left(v \exp \left(\frac{u}{v} \right) \right)_{-v}^v \, dv \\
= \frac{1}{2} \int_0^1 v \left(e - e^{-1} \right) \, dv = \frac{1}{4}(e - e^{-1}). \]
The purpose of this supplement is to prove the equality of the following two limits
\[
\lim_{a \to \infty} \iint_{D_a} e^{-(x^2 + y^2)} \, dx \, dy = \lim_{a \to \infty} \iint_{R_a} e^{-(x^2 + y^2)} \, dx \, dy,
\]
which was used in the derivation of the Gaussian integral formula. In the text, we showed that we showed that
\[
\lim_{a \to \infty} \iint_{D_a} e^{-(x^2 + y^2)} \, dx \, dy
\]
exists by directly evaluating it. Thus, it suffices to show that
\[
\lim_{a \to \infty} \left(\iint_{R_a} e^{-(x^2 + y^2)} \, dx \, dy - \iint_{D_a} e^{-(x^2 + y^2)} \, dx \, dy \right)
\]
equals zero. The limit equals
\[
\lim_{a \to \infty} \iint_{C_a} e^{-(x^2 + y^2)} \, dx \, dy,
\]
where \(C_a\) is the region between \(R_a\) and \(D_a\) (see Figure 6.1.3).

Figure 6.1.3. The region \(C_a\) lies between the square \(R_a\) and the circle \(D_a\).

In the region \(C_a\), \(\sqrt{x^2 + y^2} \geq a\) (the radius of \(D_a\)), so \(e^{-(x^2 + y^2)} \leq e^{-a^2}\). Thus,
\[
0 \leq \iint_{C_a} e^{-(x^2 + y^2)} \, dx \, dy \leq \iint_{C_a} e^{-a^2} \, dx \, dy
\]
6.2B The Gaussian Integral

\[e^{-a^2} \text{ area } (C_a) = e^{-a^2} (4a^2 - \pi a^2) = (4 - \pi)a^2 e^{-a^2}. \]

Thus it is enough to show that \(\lim_{a \to \infty} a^2 e^{-a^2} = 0 \). But, by l’Hôpital’s rule

\[
\lim_{a \to \infty} a^2 e^{-a^2} = \lim_{a \to \infty} \left(\frac{a^2}{e^{a^2}} \right) = \lim_{a \to \infty} \left(\frac{2a}{2ae^{a^2}} \right) = \lim_{a \to \infty} \frac{1}{e^{a^2}} = 0,
\]

as required. ■
8
The Integral Theorems of Vector Analysis

George Green (1793–1841), a self-taught English mathematician, undertook to treat static electricity and magnetism in a thoroughly mathematical fashion. In 1828 Green published a privately printed booklet, *An essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism*. This was neglected until Sir William Thomson (Lord Kelvin, 1824–1907) discovered it, recognized its great value, and had it published in the *Journal für Mathematik* starting in 1850.

Green, who learned much from Poisson’s papers, also carried over the notion of the potential function to electricity and magnetism.

Morris Klein

Mathematical Thought from Ancient to Modern Times

Supplement for §8.3

Exact Differentials

The main theoretical point is that, to solve a differential equation in the variables \((x, y)\) of the form

\[P(x, y) + Q(x, y) \frac{dy}{dx} = 0, \quad (8.2.1) \]
we proceed as follows: first we test to see if $Pdx + Qdy$ is exact; that is, if the corresponding vector field $P\mathbf{i} + Q\mathbf{j}$ is conservative. If it is, then there is a function $f(x, y)$ such that

$$P = \frac{\partial f}{\partial x}; \quad Q = \frac{\partial f}{\partial y}.\]

Recall that the test for exactness is

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x},$$

and that this corresponds to equality of mixed partial derivatives of f.

*If the equation is exact and we find a corresponding f, then the equation $f(x, y) = \text{constant}$ implicitly defines solutions as level sets of f. This assertion is readily checked by implicit differentiation as follows. If x and y are each functions of t and lie on the surface constant $= f(x, y)$, then differentiating both sides and using the chain rule gives

$$0 = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} = P\frac{dx}{dt} + Q\frac{dy}{dt}.$$*

In fact, this is one possible way to interpret equation (8.2.1). If y is a function of x and we similarly differentiate the equation constant $= f(x, y)$ with respect to x and use the chain rule in a similar way, then we literally get equation (8.2.1).

Example 1. Solve the following differential equation satisfying the given conditions:

$$\cos y \sin x + \sin y \cos x \frac{dy}{dx} = 0, \quad y \left(\frac{\pi}{4}\right) = 0.$$

Solution. The equation is exact, since

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y}(\cos y \sin x) = -\sin y \sin x,$$

and

$$\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}(\sin y \cos x) = -\sin y \cos x.$$

The function $f(x, y)$ such that $P = \frac{\partial f}{\partial x}$ and $Q = \frac{\partial f}{\partial y}$ can then be found by integration:

$$\int P\, dx = \int \cos y \sin x\, dx = -\cos y \cos x + g(y) + C_1$$

$$\int Q\, dy = \int \sin y \cos x\, dy = -\cos y \cos x + h(x) + C_2,$$
where \(g(y) \) is a function of \(y \) only (which will show up when integrating \(Q \) with respect to \(y \)), \(h(x) \) is a function of \(x \) only (which will show up when integrating \(P \) with respect to \(x \)), and \(C_2 \) and \(C_2 \) are two constants. Compare those two results, we find that \(f(x, y) = -\cos y \cos x = C \), a constant. Since \(y = 0 \) when \(x = \pi/4 \), we find that \(C = -\cos 0 \cdot \cos(\pi/4) = -1/\sqrt{2} \), thus, the solution is defined by \(\cos y \cos x = 1/\sqrt{2} \).

Sometimes multiplying an equation by an appropriate factor can make it exact. Such factors are called integrating factors.

Example 2. Solve the equation

\[
x \frac{dy}{dx} = xy^2 + y
\]

by using the integrating factor \(1/y^2 \).

Solution. The integrating factor \(1/y^2 \) makes our equation exact. To check this, first multiply and then check for exactness: The equation is

\[
x \frac{dy}{y^2 \, dx} - \frac{1}{y} \frac{dy}{dx} = 0.
\]

Now,

\[
\frac{\partial}{\partial y} \left(-\frac{x}{1} \frac{dy}{y} \right) = -1 \frac{1}{y^2} = \frac{1}{y^2};
\]

and

\[
\frac{\partial}{\partial x} \left(\frac{x}{y^2} \frac{dy}{dx} \right) = \frac{1}{y^2}.
\]

Thus, the equation is exact. To find an antiderivative, write

\[
\int \left(-\frac{x}{1} \frac{dy}{y} \right) \, dx = -\frac{x^2}{2} - \frac{x}{y} + g_1(y), \quad (8.2.2)
\]

\[
\int \frac{x}{y^2} \, dy = -\frac{x}{y} + g_2(x). \quad (8.2.3)
\]

Comparing (8.2.2) and (8.2.3), we see that if \(g_2(x) = -x^2/2 \) and \(g_1(y) = C \), a constant, then the equation is solved, and so the solution is defined by the level curves of \(f \), i.e.,

\[
f(x, y) = \frac{x}{y} + \frac{x^2}{2} = C.
\]
Supplement for §8.5
Green’s Functions

Next we show how vector analysis can be used to solve differential equations by a method called potential theory or the Green’s-function method. The presentation will be quite informal; the reader may consult references, such as

for further information.

Suppose we wish to solve Poisson’s equation

$$\nabla^2 u = \rho$$

for $u(x, y, z)$, where $\rho(x, y, z)$ is a given function. Recall that this equation arises from Gauss’ Law if $E = \nabla u$ and also in the problem of determining the gravitational potential from a given mass distribution.

A function $G(x, y)$ that has the properties

$$G(x, y) = G(y, x) \quad \text{and} \quad \nabla^2 G(x, y) = \delta(x - y) \quad (8.5.4)$$

(in this expression y is held fixed, that is, which solves the differential equations with ρ replaced by δ, is called Green’s function for this differential equation. Here $\rho(x - y)$ represents the Dirac delta function, “defined” by

(i) $\delta(x - y) = 0$ for $x \neq y$

and

(ii) $\int_{R^3} \int_{R^3} \delta(x - y) \, dy = 1$.

It has the following operational property that formally follows from conditions (i) and (ii): For any continuous function $f(x)$,

$$\int_{R^3} \int_{R^3} f(y)\delta(x - y) \, dy = f(x). \quad (8.5.5)$$

This is sometimes called the sifting property of δ.

1This is not a precise definition; nevertheless, it is enough here to assume that δ is a symbolic expression with the operational property shown in equation (8.5.5). See the references in the preceding footnote for a more careful definition of δ.
Theorem 1. If $G(x, y)$ satisfies the differential equation $\nabla^2 u = \rho$ with ρ replaced by $\delta(x - y)$, then

$$u(x) = \iiint_{\mathbb{R}^3} G(x, y) \rho(y) \, dy$$

(8.5.6)

is a solution to $\nabla^2 u = \rho$.

Proof. To see this, note that

$$\nabla^2 \iiint_{\mathbb{R}^3} G(x, y) \rho(y) \, dy = \iiint_{\mathbb{R}^3} (\nabla^2 G(x, y)) \rho(y) \, dy$$

(by 8.5.4)

$$= \iiint_{\mathbb{R}^3} \delta(x - y) \rho(y) \, dy$$

(by 8.5.5)

The “function” $\rho(x) = \delta(x)$ represents a unit change concentrated at a single point [see conditions (i) and (ii), above]. Thus $G(x, y)$ represents the potential at x due to a charge placed at y.

Green’s Function in \(\mathbb{R}^3 \). We claim that equation (8.5.4) is satisfied if we choose

$$G(x, y) = -\frac{1}{4\pi \|x - y\|^3}.$$

Clearly $G(x, y) = G(y, x)$. To check the second part of equation (8.5.4), we must verify that $\nabla^2 G(x, y)$ has the following two properties of the δ function:

(i) $\nabla^2 G(x, y) = 0$ for $x \neq y$

and

(ii) $\iiint_{\mathbb{R}^3} \nabla^2 G(x, y) = 1$.

We will explain the meaning of (ii) in the course of the following discussion. Property (i) is true because the gradient of G is

$$\nabla G(x, y) = \frac{r}{4\pi r^3},$$

(8.5.7)

where $r = x - y$ is the vector from y to x and $r = \|r\|$ (see Exercise 30, §4.4), and therefore for $r \neq 0$, $\nabla \cdot \nabla G(x, y) = 0$ (as in the aforementioned exercise). For property (ii), let B be a ball about x; by property (i),

$$\iiint_{\mathbb{R}^3} \nabla^2 G(x, y) \, dy = \iiint_B \nabla^2 G(x, y) \, dy.$$
This, in turn, equals
\[\int \int_{\partial B} \nabla^2 G(x, y) \cdot n \, dS. \]
by Gauss' Theorem. Thus, making use of (8.5.7), we get
\[\int \int_{\partial B} \nabla^2 G(x, y) \cdot n \, dS = \int \int_{\partial B} \frac{r \cdot n}{4\pi r^3} \, dS = 1, \]
which proves property (ii). Therefore, a solution of \(\nabla^2 u = \rho \) is
\[u(x) = \int \int \int_{\mathbb{R}^3} \frac{-\rho(y)}{4\pi \|x - y\|} \, dy. \] (8.5.8)
by Theorem 1.

Green's Function in Two Dimensions. In the plane rather than in \(\mathbb{R}^3 \), one can similarly show that
\[G(x, y) = \frac{1}{2\pi} \log \|x - y\|, \] (8.5.9)
and so a solution of the equation \(\nabla^2 u = \rho \) is
\[u(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \rho(y) \log \|x - y\| \, dy. \]

Green's Identities. We now turn to the problem of using Green’s functions to solve Poisson’s equation in a bounded region with given boundary conditions. To do this, we need Green’s first and second identities, which can be obtained from the divergence theorem (see Exercise 15, §8.4). We start with the identity
\[\int \int \int_V \nabla \cdot F \, dV = \int \int_S F \cdot n \, dS. \]
where \(V \) is a region in space, \(S \) is its boundary, and \(n \) is the outward unit normal vector. Replacing \(F \) by \(f \nabla g \), where \(f \) and \(g \) are scalar functions, we obtain
\[\int \int \int_V \nabla f \cdot \nabla g \, dV + \int \int \int_V f \nabla^2 g \, dV = \int \int_S f \frac{\partial g}{\partial n} \, dS. \] (8.5.10)
where \(\frac{\partial g}{\partial n} = \nabla g \cdot n \). This is **Green’s first identity.** If we simply permute \(f \) and \(g \) and subtract the result from equation (8.5.10), we obtain **Green’s second identity,**
\[\int \int \int_V (f \nabla^2 g - g \nabla^2 f) \, dV = \int \int_S \left(f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n} \right) \, dS, \] (8.5.11)
which we shall use shortly.
Green’s Functions in Bounded Regions. Consider Poisson’s equation \(\nabla^2 u = \rho \) in some region \(V \), and the corresponding equations for Green’s function

\[G(x, y) = G(y, x) \quad \text{and} \quad \nabla^2 G(x, y) = \delta(x - y). \]

Inserting \(u \) and \(G \) into Green’s second identity (8.5.11), we obtain

\[
\iiint_{V} (u \nabla^2 G - G \nabla^2 u) \, dV = \iint_{S} \left(u \frac{\partial G}{\partial n} - G \frac{\partial u}{\partial n} \right) \, dS.
\]

Choosing our integration variable to be \(y \) and using \(G(x, y) = G(y, x) \), this becomes

\[
\iiint_{V} \left[u(y) \delta(x - y) - G(x, y) \rho(y) \right] \, dy = \iint_{S} \left(u \frac{\partial G}{\partial n} - G \frac{\partial u}{\partial n} \right) \, dS;
\]

and by equation (8.5.5),

\[
u(x) = \iiint_{V} G(x, y) \rho(y) \, dy + \iint_{S} \left(u \frac{\partial G}{\partial n} - G \frac{\partial u}{\partial n} \right) \, dS. \tag{8.5.12}
\]

Note that for an unbounded region, this becomes identical to our previous result, equation (8.5.6), for all of space. Equation (8.5.12) enables us to solve for \(u \) in a bounded region where \(\rho = 0 \) by incorporating the conditions that \(u \) must obey on \(S \).

If \(\rho = 0 \), equation (8.5.12) reduces to

\[
u = \iint_{S} \left(u \frac{\partial G}{\partial n} - G \frac{\partial u}{\partial n} \right) \, dS,
\]

or, fully,

\[
u(x) = \iint_{S} \left[u(y) \frac{\partial G}{\partial n}(x, y) - G(x, y) \frac{\partial u}{\partial n}(y) \right] \, dS, \tag{8.5.13}
\]

where \(u \) appears on both sides of the equation and the integration variable is \(y \). The crucial point is that evaluation of the integral requires only that we know the behavior of \(u \) on \(S \). Commonly, either \(u \) is given on the boundary (for a **Dirichlet problem** or \(\partial u/\partial n \) is given on the boundary (for a **Neumann problem**. If we know \(u \) on the boundary, we want to make \(G \partial u/\partial n \) vanish on the boundary so we can evaluate the integral. Therefore if \(u \) is given on \(S \) we must find a \(G \) such that \(G(x, y) \) vanishes whenever \(y \) lies on \(S \). This is called the **Dirichlet Green’s function for the region** \(V \). Conversely, if \(\partial u/\partial n \) is given on \(S \) we must find a \(G \) such that \(\partial G/\partial n \) vanishes on \(S \). This is the **Neumann Green’s function**.

Thus, a Dirichlet Green’s function \(G(x, y) \) is defined for \(x \) and \(y \) in the volume \(V \) and satisfies these three conditions:
98 8 Integral Theorems of Vector Analysis

(a) \(G(x, y) = G(y, x) \),
(b) \(\nabla^2 G(x, y) = \delta(x - y) \),
(c) \(G(x, y) = 0 \) when \(y \) lies on \(S \), the boundary of the region \(V \).

[Note that by condition (a), in conditions (b) and (c) the variables \(x \) and \(y \) can be interchanged without changing the condition.]

It is interesting to note that condition (a) is actually a consequence of conditions (b) and (c), provided (b) and (c) also hold with \(x \) and \(y \) interchanged.

To see this, we fix points \(y \) and \(w \) and use equation (8.5.11) with \(f(x) = G(x, y) \) and \(g(x) = G(w, x) \). By condition (b),
\[
\nabla^2 f(x) = \delta(x - y) \quad \text{and} \quad \nabla^2 g(x) = \delta(x - w),
\]
and by condition (c), \(f \) and \(g \) vanish when \(x \) lies on \(S \) and so the right hand side of (8.5.11) is zero. On the left hand side, we substitute \(f(x) \) and \(g(x) \) to give
\[
\iiint_V \left[G(x, y) \delta(x - w) - G(w, x) \delta(x - y) \right] \, dx = 0
\]
which gives
\[
G(w, y) = G(y, w),
\]
which is the asserted symmetry of \(G \). This means, in effect, that if (b) and (c) hold with \(x \) and \(y \) interchanged, then it is not necessary to check condition (a). (This result is sometimes called the principle of reciprocity.)

Solving any particular Dirichlet or Neumann problem thus reduces to the task of finding Laplace’s equations on all of \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \), namely, equations (8.5.8) and (8.5.9).

Green’s Function for a Disk. We shall now use the two-dimensional Green’s function method to construct the Dirichlet Green’s function for the disk of radius \(R \) (see Figure 8.5.1). This will enable us to solve \(\nabla^2 u = 0 \) (or \(\nabla^2 u = \rho \) with \(u \) given on the boundary circle.

In Figure 8.5.1 we have draw the point \(x \) on the circumference because that is where we want \(G \) to vanish. [According to the procedure above, \(G(x, y) \) is supposed to vanish when either \(x \) or \(y \) is on \(C \). We have chosen \(x \) on \(C \) to begin with.] The Green’s function \(G(x, y) \) that we shall find will, of course, be valid for all \(x, y \) in the disk. The point \(y' \) represents the “reflection” of the point \(y \) into the region outside the circle, such that \(ab = R^2 \). Now when \(x \in C \), by the similarity of the triangles \(xOy \) and \(xOy' \),
\[
\frac{r}{R} = \frac{r''}{b}, \quad \text{that is,} \quad r = \frac{r''R}{b} = \frac{r''a}{R}.
\]
Hence, if we choose our Green’s function to be
\[
G(x, y) = \frac{1}{2\pi} \left(\log r - \log \frac{r''a}{R} \right), \quad (8.5.14)
\]
Figure 8.5.1. Geometry of the construction of Green’s function for a disk.

we see that \(G \) is zero if \(x \) is on \(C \). Since \(r''a/R \) reduces to \(r \) when \(y \) is on \(C \), \(G \) also vanishes when \(y \) is on \(C \). If we can show that \(G \) satisfies \(\nabla^2 G = \delta(x - y) \) in the circle, then we will have proved that \(G \) is indeed the Dirichlet Green’s function. From equation (8.5.9) we know that \(\nabla^2 (\log r)/2\pi = \delta(x - y) \), so that

\[
\nabla^2 G(x, y) = \delta(x - y) - \delta(x - y'),
\]

but \(y' \) is always outside the circle, and so \(x \) can never be equal to \(y' \) and \(\delta(x - y') \) is always zero. Hence,

\[
\nabla^2 G(x, y) = \delta(x - y)
\]

and thus \(G \) is the Dirichlet Green’s function for the circle.

Now we shall consider the problem of solving

\[\nabla^2 u = 0 \]

in this circle if \(u(R, \theta) = f(\theta) \) is the given boundary condition. By equation (8.5.13) we have a solution

\[
u = \int_C \left(\frac{\partial G}{\partial n} - G \frac{\partial u}{\partial n} \right) \, ds.
\]

But \(G = 0 \) on \(C \), and so we are left with the integral

\[
u = \int_C \frac{\partial G}{\partial n} \, ds,
\]

where we can replace \(u \) by \(f(\theta) \), since the integral is around \(C \). Thus the task of solving the Dirichlet problem in the circle is reduced to finding.
From equation (8.5.14) we can write
\[
\frac{\partial G}{\partial n} = \frac{1}{2\pi} \left(\frac{1}{r} \frac{\partial r}{\partial n} - \frac{1}{r''} \frac{\partial r''}{\partial n} \right).
\]

Now
\[
\frac{\partial r}{\partial n} = \nabla r \cdot n \quad \text{and} \quad \nabla r = \frac{r}{r},
\]
where \(r = x - y\), and so
\[
\frac{\partial r}{\partial n} = \frac{r \cdot n}{r} = \frac{r \cos(nr)}{r} = \cos(nr),
\]
where \((nr)\) represents the angle between \(n\) and \(r\). Likewise,
\[
\frac{\partial r''}{\partial n} = \cos(nr'').
\]

In triangle \(xyO\), we have, by the cosine law, \(a^2 = r^2 + R^2 - 2rR \cos(nr)\), and in triangle \(xy'O\), we get \(b^2 = (r'')^2 + R^2 - 2r''R \cos(nr'')\), and so
\[
\frac{\partial r}{\partial n} = \cos(nr) = \frac{R^2 + r^2 - a^2}{2rR} \quad \text{and} \quad \frac{\partial r''}{\partial n} = \cos(nr'') = \frac{R^2 + (r'')^2 - a^2}{2r''R}.
\]

Hence
\[
\frac{\partial G}{\partial n} = \frac{1}{2\pi} \left[\frac{R^2 + r^2 - a^2}{2rR} - \frac{R^2 + (r'')^2 - a^2}{2r''R} \right].
\]

Using the relationship between \(r\) and \(r''\) when \(x\) is on \(C\), we get
\[
\left. \frac{\partial G}{\partial n} \right|_{x \in C} = \frac{1}{2\pi} \left(\frac{R^2 - a^2}{Rr^2} \right).
\]

Thus the solution can be written as
\[
u = \frac{1}{2\pi} \int_C f(\theta) \frac{R^2 - a^2}{Rr^2} \, ds.
\]

Let us write this in a more useful form. Note that in triangle \(xy'O\), we can write
\[
r = \left[a^2 + R^2 - 2aR \cos(\theta - \theta') \right]^{1/2},
\]
where \(\theta\) and \(\theta'\) are the polar angles in \(x\) and \(y\) space, respectively. Second, our solution must be valid for all \(y\) in the circle; hence the distance of \(y\) from the origin must now become a variable, which we shall call \(r'\). Finally, note that \(ds = R \, d\theta\) on \(C\), so we can write the solution in polar coordinates as
\[
u(r', \theta') = \frac{R^2 - (r')^2}{2\pi} \int_0^{2\pi} f(\theta) \frac{d\theta}{(r')^2 + R^2 - 2r'R \cos(\theta - \theta')}.
\]
This is known as **Poisson’s formula in two dimensions**.\(^2\) As an exercise, the reader should use this to write down the solution of \(\nabla^2 u = \rho\) with \(u\) a given function \(f(\theta)\) on the boundary.

Exercises

1. (a) With notation as in Figure 8.5.1, show that the Dirichlet problem for the sphere of radius \(R\) in three dimensions has Green’s function

\[
G(x, y) = \frac{1}{4\pi} \left(\frac{R}{ar^n} - \frac{1}{r} \right).
\]

(b) Prove Poisson’s formula in three dimensions:

\[
u(y) = \frac{R(R^2 - a^2)}{4\pi} \int_0^{2\pi} \int_0^\pi \frac{f(\theta, \phi) \sin \phi d\theta d\phi}{(R^2 - a^2 - 2Ra \cos \gamma)^{3/2}}
\]

2. Let \(H\) denote the upper half space \(z \geq 0\). For a point \(x = (x, y, z)\) in \(H\), let \(R(x) = (x, y, -z)\), the reflection of \(x\) in the \(xy\) plane. Let \(G(x, y) = -1/(4\pi ||x - y||)\) be the Green’s function for all of \(\mathbb{R}^3\).

(a) Verify that the function \(\tilde{G}\) defined by

\[
\tilde{G}(x, y) = G(x, y) - G(R(x), y)
\]

is the Green’s function for the Laplacian in \(H\).

(b) Write down a formula for the solution \(u\) of the problem

\[
\nabla^2 u = \rho \quad \text{in} \quad H, \quad \text{and} \quad u(x, y, 0) = \phi(x, y).
\]

Exercises 3 through 9 give some sample applications of vector calculus to shock waves.\(^3\)

3. Consider the equation

\[
u_t + uu_x = 0
\]

for a function \(u(x, t), -\infty < x < \infty, t \geq 0\), where \(u_t = \partial u/\partial t\) and \(u_x = \partial u/\partial x\). Let \(u(x, 0) = u_0(x)\) be the given value of \(u\) at \(t = 0\). The curves \((x(s), t(s))\) in the \(xt\) plane defined by

\[
x = u, \quad t = 1
\]

Integral Theorems of Vector Analysis

are called characteristic curves (the overdot denotes the derivative with respect to \(s \)).

(a) Show that \(\dot{u} \) is constant along each characteristic curve by showing that \(\dot{u} = 0 \).

(b) Show that the slopes of the characteristic curves are given by \(\frac{dt}{dx} = \frac{1}{u} \), and use it to prove that the characteristic curves are straight lines determined by the initial data.

(c) Suppose that \(x_1 < x_2 \) and \(u_0(x_1) > u_0(x_2) > 0 \). Show that the two characteristics through the points \((x_1, 0)\) and \((x_2, 0)\) intersect at a point \(P = (\bar{x}, \bar{t}) \) with \(\bar{t} > 0 \). Show that this together with the result in part (a) implies that the solution cannot be continuous at \(P \) (see Figure 8.5.2).

![Figure 8.5.2: Characteristics of the equation \(u_t + au_x = 0 \).](image)

(d) Calculate \(\bar{t} \).

4. Repeat Exercise 3 for the equation

\[
 u_t + f(u)_x = 0, \tag{8.5.15}
\]

where \(f'' > 0 \) and \(f'(u_0(x_2)) > 0 \). The characteristics are now defined by \(\dot{x} = f'(u), \dot{t} = 1 \). We call equation (8.5.15) and equation in divergence form. (This exercise shows that a continuous solution is generally impossible—irrespective of the smoothness of \(f' \!).

5. (Weak solutions) Since equations of the form in Exercise 4 arise in many physical applications [gas dynamics, magnetohydrodynamics, nonlinear optics (lasers)] and because it would be nice for a solution to exist for all time \((t) \), it is desirable to make sense out of the equation by reinterpreting it when discontinuities develop. To this end, let \(\phi = \phi(x,t) \) be a \(C^1 \) function. Let \(D \) be a rectangle in the \(xt \) plane determined by \(-a \leq x \leq a \) and \(0 \leq t \leq T \), such that \(\phi(x,t) = 0 \) for \(x = \pm a, x = T \), and for all \((x,t)\) in the upper half plane outside \(D \). Let \(u \) be a “genuine” solution of equation (8.5.15).
(a) Show that
\[\int_{t \geq 0} \left[u \phi_t + f(u) \phi_x \right] dxdx + \int_{t=0} u_0(x) \phi(x, 0) \, dx = 0. \quad (8.5.16)\]

(HINT: Start with \(\int_{D} [u_t + f(u)x] \phi \, dx = 0.\))

Thus, if \(u\) is a smooth solution, then equation (8.5.16) holds for all \(\phi\) as above. We call the function \(u\) a weak solution if equation (8.5.15) if equation (8.5.16) holds for all such \(\phi\).

(b) Show that if \(u\) is a weak solution that is \(C^1\) in an open set \(\Omega\) in the upper half of the \(xt\) plane, then \(u\) is a genuine solution of equation (8.5.15) in \(\Omega\).

6. (The jump condition, which is also known in gas dynamics as the Rankine-Hugoniot condition.) The definition of a weak solution given in Exercise 5 clearly allows discontinuous solutions. However, the reader shall now determine that not every type of discontinuity is admissible, for there is a connection between the discontinuity curve and the values of the solution on both sides of the discontinuity.

Let \(u\) be a (weak) solution of equation (8.5.15) and suppose \(\Gamma\) is a smooth curve in the \(xt\) plane such that \(u\) “jumps” across a curve \(\Gamma\); that is, \(u\) is of a class \(C^1\) except for jump discontinuity across \(\Gamma\). We call that \(\Gamma\) a shock wave. Choose a point \(P \in \Gamma\) and construct, near \(P\), a “rectangle” \(D = D_1 \cup D_2\), as shown in Figure 8.5.3. Choose \(\phi\) to vanish on \(D\) and outside \(D\).

\[\text{Figure 8.5.3. The solution } u \text{ jumps in value from } u_1 \text{ to } u_2 \text{ across } \Gamma.\]

(a) Show that
\[\int_{D} [u \phi_t + f(u) \phi_x] \, dx \, dt = 0\]
and
\[\int\int_{D_1} [u\phi_t + f(u)\phi_x] \, dx \, dt = \int\int_{D_1} [(u\phi)_t + (f(u)\phi)_x] \, dx \, dt. \]

(b) Suppose that \(u \) jumps in value from \(u_1 \) to \(u_2 \) across \(\Gamma \) so that when \((x, t) \) approaches a point \((x_0, t_0) \) on \(\Gamma \) from \(\partial D_i \), \(u(x, t) \) approaches the value \(u_i(x_0, t_0) \). Show that
\[0 = \int_{\partial D_1} \phi[-u \, dx + f(u) \, dt] + \int_{\partial D_2} \phi[-u \, dx + f(u) \, dt] \]
and deduce that
\[0 = \int_{\Gamma} \phi([-u] \, dx + [f(u)] \, dt) \]
where \([\alpha(u)] = \alpha(u_2) - \alpha(u_1) \) denotes the jump in the quantity \(\alpha(u) \) across \(\Gamma \).

(c) If the curve \(\Gamma \) defines \(x \) implicitly as a function of \(t \) and \(\partial D \) intersects \(\Gamma \) at \(Q = (x(t_1), t_1) \) and \(R = (x(t_2), t_2) \), show that
\[0 = \int_{Q}^{R} \phi([-u] \, dx + [f(u)] \, dt) = \int_{t_1}^{t_2} \phi \left([-u] \frac{dx}{dt} + [f(u)] \right) \, dt. \]

(d) Show that at the point \(P \) on \(\Gamma \),
\[[u] \cdot s = [f(u)], \quad (8.5.17) \]
where \(s = dx/dt \) at \(P \). The number \(s \) is called the speed of the discontinuity. Equation \((8.5.17) \) is called the jump condition; it is the relationship that any discontinuous solution will satisfy.

7. (Loss of uniqueness) One drawback of accepting weak solutions is loss of uniqueness. (In gas dynamics, some mathematical solutions are extraneous and rejected on physical grounds. For example, discontinuous solutions of rarefaction shock waves are rejected because they indicate that entropy decreases across the discontinuity.)

Consider the equation
\[u_t + \left(\frac{u^2}{2} \right)_x = 0, \quad \text{with initial data} \quad u(x, 0) = \begin{cases} -1, & x \geq 0 \\ 1, & x < 0. \end{cases} \]
Show that for every $\alpha \geq 1$, u_α is a weak solution, where u_α is defined by

$$u_\alpha(x,t) = \begin{cases}
1, & x \leq \frac{1-\alpha}{2} t \\
-\alpha, & \frac{1-\alpha}{2} t \leq x \leq 0 \\
\alpha, & 0 \leq x \leq \frac{\alpha-1}{2} t \\
-1, & \frac{\alpha-1}{2} t < x.
\end{cases}$$

(It can be shown that if $f'' > 0$, uniqueness can be recovered by imposing an additional constraint on the solutions. Thus, there is a unique solution satisfying the “entropy” condition

$$\frac{u(x+a,t) - u(x,t)}{a} \leq \frac{E}{t}$$

for some $E > 0$ and all $a \neq 0$. Hence for fixed t, $u(x,t)$ can only “jump down” as x increases. In our example, this holds only for the solution with $\alpha = 1$.)

8. (The solution of equation (8.5.15) depends on the particular divergence form used.) The equation $u_t + uu_x = 0$ can be written in the two divergence forms

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0. \quad (i)$$

$$\left(\frac{1}{2}u^2\right)_t + \left(\frac{1}{3}u^3\right)_x = 0. \quad (ii)$$

Show that a weak solution of equation (i) need not be a weak solution of equation (ii). [HINT: The equations have different jump conditions: In equation (i), $s = \frac{1}{2}(u_2 + u_1)$, while in equation (ii), $s = \frac{4}{3}(u_2^2 + u_1 u_2 + u_2 u_1)/(u_2 + u_1)$.]

9. (Noninvariance of weak solutions under nonlinear transformation) Consider equation (8.5.15) where $f'' > 0$.

(a) Show that the transformation $v = f'(u)$ takes this equation into

$$v_t + vv_x = 0. \quad (8.5.18)$$

(b) Show that the above transformation does not necessarily map discontinuous solutions of equation (8.5.15) into discontinuous solutions of equation (8.5.18). (HINT: Check the jump conditions; for equation (8.5.18), $s[u] = \frac{1}{2}[u^2]$ implies $s[f'(u)] = \frac{1}{2}[f'(u)^2]$; for equation (8.5.15), $s[u] = |f(u)|$.)
10. Requires a knowledge of complex numbers. Show that Poisson’s formula in two dimensions may be written as

\[u(r', \theta') = \frac{1}{2\pi} \int_{0}^{2\pi} u(re^{i\theta}) \frac{r^2 - |z'|^2}{|re^{i\theta} - z'|^2} d\theta, \]

where \(z' = r'e^{i\theta'} \).
§2.7 Some Technical Differentiation Theorems.

1. \(Df(x, y, z) = \begin{bmatrix} e^x & 0 & 0 \\ 0 & -\sin y & 0 \\ 0 & 0 & \cos z \end{bmatrix} \);

 \(Df \) is a diagonal matrix if each component function \(f_i \) depends only on \(x_i \).

3. (a) Let \(A = B = C = \mathbb{R} \) with \(f(x) = 0 \) and \(g(x) = 0 \) if \(x \neq 0 \) and \(g(0) = 1 \). Then \(w = 0 \) and \(g(f(x)) - 1 \) for all \(x \).

 (b) If \(\epsilon > 0 \), let \(\delta_1 \) and \(\delta_2 \) be small enough that \(D_{\delta_1}(y_0) \subset B \) and \(\|g(y) - w\| < \epsilon \) whenever \(y \in B \) and \(0 < \|y - y_0\| < \delta_2 \). Since \(g(y_0) = w \), the \(0 < \|y - y_0\| \) restriction may be dropped. Let \(\delta \) be small enough that \(\|f(x) - y_0\| < \min(\delta_1, \delta_2) \) whenever \(x \in A \) and \(0 < \|x - x_0\| < \delta \). Then for such \(x \), \(\|f(x) - y_0\| < \delta_2 \), so that \(f(x) \in B \) and \(g(f(x)) \) is defined. Also, \(\|f(x) - y_0\| < \delta_2 \), and so \(\|g(f(x)) - w\| < \epsilon \).

5. Let \(x = (x_1, \ldots, x_n) \) and fix an index \(k \). Then

\[
\begin{align*}
f(x) &= a_{kk} x_k^2 + \sum_{i=1, i \neq k}^n a_{kj} x_k x_j \\
&\quad + \sum_{j=1, j \neq k}^n a_{kj} x_k x_j + \text{[terms not involving } x_k]\end{align*}
\]
and therefore
\[\frac{\partial f}{\partial x_k} = 2a_{kk}x_k + \sum_{i \neq k} a_{ki}x_i + \sum_{i \neq k} a_{ki}x_i = 2 \sum_{j=1}^n a_{kj}x_j = (2Ax)_k. \]

Since the kth components agree for each k, $\nabla f(x) = 2Ax$.

7. The matrix T of partial derivatives is formed by placing $Dg(x_0)$ and $Dh(y_0)$ next to each other in a matrix so that $T(x_0, y_0)(x - x_0, y - y_0) = Dg(x_0)(x - x_0) + Dh(y_0)(y - y_0)$. Now use the triangle inequality and the fact that $\| (x - x_0, y - y_0) \|$ is larger than $|x - x_0|$ and $|y - y_0|$ to show that $\| f(x, y) - f(x_0, y_0) - T(x_0, y_0)(x - x_0, y - y_0) \|/\| (x - x_0, y - y_0) \|$ goes to 0.

9. Use the limit theorems and the fact that the function $g(x) = \sqrt{|x|}$ is continuous. (Prove the last statement.)

11. For continuity at $(0, 0)$, use the fact that
\[\left| \frac{xy}{(x^2 + y^2)^{1/2}} \right| \leq \frac{|xy|}{(x^2)^{1/2}} = |y| \]
or that $|xy| \leq (x^2 + y^2)/2$.

13. 0, see Exercise 11.

15. Let x take the role of x_0 and $x + h$ that of x in the definition.

17. The vector a takes the place of x_0 in the definition of a limit or in Theorem 6. In either case, the limit depends only on values of $f(x)$ for x near x_0, not for $x = x_0$. Therefore $f(x) = g(x)$ for $x \neq a$ certainly suffices to make the limits equal.

19. (a) $\lim_{x \to 0}(f_1 + f_2)(x)/\|x\| = \lim_{x \to 0} f_1(x)/\|x\| + \lim_{x \to 0} f_1(x)/\|x\| = 0$.

(b) Let $\epsilon > 0$. Since f is $o(x)$, there is a $\delta > 0$ such that $\|f(x)/\|x\|| < \epsilon/c$ whenever $0 < \|x\| < \delta$. Then $\|\left(gf\right)(x)/\|x\|| \leq \|g(x)/f(x)/\|x\|| < c$, so $\lim_{x \to 0} (gf)(x)/\|x\| = 0$.

(c) $\lim_{x \to 0} f(x)/|x| = \lim_{x \to 0} g(x)/|x| = 0$, so that $f(x)$ is $o(x)$. But $\lim_{x \to 0} g(x)/|x|$ does not exist, since $g(x)/|x| = \pm 1$ (as x is positive or negative). Therefore $g(x)$ is not $o(x)$.
Solutions to Selected Exercises in §2.7

1. Here, we have \(f(x, y, z) = (e^x, \cos y, \sin z) = (f_1, f_2, f_3) \), so

\[
Df(x, y, z) = \begin{bmatrix}
\frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\
\frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\
\frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
e^x & 0 & 0 \\
0 & -\sin y & 0 \\
0 & 0 & \cos z
\end{bmatrix}
\]

\(Df \) is a diagonal matrix when \(f_1 \) depends only on the first variable, \(f_2 \) depends only on the second, and so on. Thus, \(Df \) is diagonal if \(f_n \) is a function of the \(n \)th variable only.

4. A uniformly continuous function is not only continuous at all points in the domain, but more importantly, for given \(\varepsilon > 0 \), we can find one \(\delta \) for all \(x_0 \). This is different from the continuity in that for continuity, we may find a \(\delta \) which will work for a particular \(x_0 \). A continuous function does not always have to be uniformly continuous (for examples: \(f(x) = 1/x^2 \) on \(\mathbb{R} \) or \(g(x) = 1/x \) on \((0, 1] \)).

(a) \(T : \mathbb{R}^n \to \mathbb{R}^m \) is linear implies that \(\|Tx\| \leq M\|x\| \). Given \(\varepsilon > 0 \), \(x \) and \(y \) \in \mathbb{R}^n \), we have \(\|T(x - y)\| \leq M\|x - y\| \) from exercise 2(a). Since \(T \) is linear, \(\|T(x - y)\| \leq \|T(x) - T(y)\| \). Let \(\delta = \varepsilon/M \); then for \(0 \leq \|x - y\| \leq \delta \), we have \(\|T(x) - T(y)\| \leq M\delta = \varepsilon \). Note that this proof works because \(\delta \) and \(\varepsilon \) do not depend on a particular choice of a point in \(\mathbb{R}^n \).

(b) Given \(\varepsilon > 0 \), we want a \(\delta > 0 \) such that \(0 < |x - x_0| < \delta \) implies \(|1/x^2 - 1/x_0^2| < \varepsilon \) for \(x \) and \(x_0 \) in \((0, 1]\). We calculate:

\[
\left| \frac{1}{x^2} - \frac{1}{x_0^2} \right| = \left| \frac{x_0^2 - x^2}{x^2x_0^2} \right| = \left| \frac{x - x_0}{x} \cdot \frac{x + x_0}{x} \right| \cdot \frac{1}{x_0^2} + \frac{1}{x_0^2} < \frac{|x - x_0|}{x} \cdot \frac{2}{x_0^3} < \varepsilon
\]

(if \(x_0 \) is the smaller of \(x \) and \(x_0 \)), i.e.,

\[
\left| \frac{1}{x^2} - \frac{1}{x_0^2} \right| \leq \frac{2}{\min(x, x_0)^3} \cdot |x - x_0|.
\]

Note that \(\min(x, x_0) > 0 \). Let \(\delta < \varepsilon/2 \cdot \min(x, x_0)^3 \), then \(|x - x_0| < \delta \) implies

\[
\left| \frac{1}{x^2} - \frac{1}{x_0^2} \right| < \delta \cdot \frac{2}{x_0^3} < \frac{\varepsilon}{2} \cdot \frac{2}{x_0^3} = \varepsilon.
\]
We have only shown that \(f(x) = 1/x^2 \) is continuous. It is not uniformly continuous since
\[
\left| \frac{1}{x^2} - \frac{1}{x_0^2} \right| = \frac{|x_0^2 - x^2|}{x^2x_0^2} = \frac{|x - x_0||x + x_0|}{x^2x_0^2},
\]
so for fixed \(\varepsilon \), any \(\delta \) approaches \(\infty \) as \(x_0 \) goes to 0.

7. We have \(f(x, y) = g(x) + h(y) \). What we want to prove is that as matrices,
\[
Df(x, y) = (Dg(x), Dh(y)).
\]
Since \(g \) and \(h \) are differentiable at \(x_0 \) and \(y_0 \), respectively, we have
\[
\lim_{x \to x_0} \frac{|g(x) - g(x_0) - Dg(x - x_0)|}{|x - x_0|} = 0
\]
and
\[
\lim_{y \to y_0} \frac{|h(y) - h(y_0) - Dh(y - y_0)|}{|y - y_0|} = 0.
\]
Now, use the triangle inequality:
\[
|g(x) - g(x_0) + h(y) - h(y_0) - (Dg(x - x_0) + Dh(y - y_0))|
\leq |g(x) - g(x_0) - Dg(x - x_0)| + |h(y) - h(y_0) - Dh(y - y_0)|.
\]
Since \(||(x, y) - (x_0, y_0)|| \geq ||x - x_0|| \) and \(||(x, y) - (x_0, y_0)|| \geq ||y - y_0|| \),
the sum of the two limits is greater than
\[
\lim_{(x, y) \to (x_0, y_0)} \frac{|g(x) + h(y) - (g(x_0) + h(y_0)) - (Dg(x - x_0) + Dh(y - y_0))|}{||(x, y) - (x_0, y_0)||}.
\]
Hence this limit goes to 0, and this satisfies the definition for differentiability of \(f \) at \((x_0, y_0) \).

11. Given \(\varepsilon \), note that
\[
\left| \frac{xy}{(x^2 + y^2)^{1/2}} - 0 \right| \leq \left| \frac{xy}{x} \right| = |y|,
\]
and we also know that \(|y| \leq \sqrt{x^2 + y^2} \). Let \(\delta = \varepsilon \); then \(||(x, y) - (0, 0)|| = \sqrt{x^2 + y^2} < \delta \) implies that
\[
\left| \frac{xy}{(x^2 + y^2)^{1/2}} - 0 \right| < |y| < \varepsilon.
\]
Therefore, \(\lim_{(x, y) \to (0,0)} f(x, y) = 0 \) and \(f \) is continuous.
16. (a) Suppose \(y \) is a boundary point of the open set \(A \subset \mathbb{R}^n \). Then every ball centered at \(y \) contains points in \(A \) and points not in \(A \). Therefore, the intersection of \(A \) and the ball \(D_\varepsilon(y) \) is not empty. Hence

(i) \(y \) is not in \(A \) since points of \(A \) have neighborhoods contained in \(A \), and

(ii) \(y \) is the limit of the sequence from \(A \); choose \(\varepsilon = 1/n, n = 1, 2, 3, \ldots \), then \(D_{(1/n)}(y) \cap A \neq \emptyset \) for \(n = 1, 2, 3, \ldots \).

Pick \(x_n \) to be an element of \(D_{(1/n)}(y) \cap A \). Then \(x_n \) is in \(A \) and \(\|y - x_n\| \leq 1/n \), which goes to zero as \(n \) goes to infinity. Suppose \(y \) is not in \(A \), but there is a sequence \(\{x_n\} \) in \(A \) converging to \(y \). Let \(\varepsilon > 0 \). The \(y \) is in the intersection of \(D_\varepsilon(y) \) and the set of all points not in \(A \), so the right-hand side is not empty. On the other hand, there exists an \(N \) such that \(n \geq N \) implies that \(\|x_n - y\| < \varepsilon \), i.e., \(n \geq N \) implies that \(x_n \) is in \(D_\varepsilon(y) \). \(x_N \) is in \(A \), so \(x_N \) is in \(D_\varepsilon(y) \cap A \). Hence, the right-hand side is a boundary point of \(A \).

(b) Suppose \(\lim_{x \to y} f(x) = b \), i.e., for every \(\varepsilon > 0 \), there is a \(\delta > 0 \) such that for \(x \) in \(A \), \(\|x - y\| < \delta \) implies that \(\|f(x) - f(y)\| < \varepsilon \).

Let \(\{x_n\} \) be a sequence in \(A \) converging to \(y \). Fix \(\varepsilon > 0 \). Choose \(\delta > 0 \) as above. Choose \(N \) so that \(n \geq N \) implies that \(\|x_n - y\| < \delta \). Then \(n \geq N \) implies \(\|f(x_n) - b\| < \varepsilon \), so the sequence \(|f(x_n)| \) converges to \(b \). (We need \(y \) to be on the boundary of \(A \) to guarantee the existence of the sequence \(\{x_n\} \).)

To go the other way, suppose it is not the case that \(\lim_{x \to y} f(x) = b \). Then there exist \(\varepsilon > 0 \) such that for every \(\delta > 0 \), there exists an \(x \) in \(A \) with \(\|x - y\| < \delta \), but \(\|f(x) - b\| > \varepsilon \). Choose \(x_n \) in \(A \) such that \(\|x_n - y\| < 1/n \), but \(\|f(x_n) - b\| > \varepsilon \) for \(n = 1, 2, 3, \ldots \) (corresponding to \(\delta = 1/n \)). Then \(x_n \) converges to \(y \) (as in part (a)), but \(f(x) \) does not converge to \(b \). (Note: We have proved the “contrapositive” of the theorem. We negate the statement of the hypothesis (note the changes in “there exists,” “for every,” and the inequality signs), and prove the negation of the result we want to arrive at. The difference between this method and the method of proving by contradiction is that we do not negate the hypothesis.)

(c) Let \(U \) be open in \(\mathbb{R}^m \) with \(x \) in \(U \). The proof follows from part (b). Specifically,

\[
\lim_{x_n \to x} f(x_n) = f(x) \text{ implies } f(x_n) \to f(x)
\]

for any sequence \(x_n \) converging to \(x \) in \(U \). By part (b), \(f \) is continuous at \(x \).
§3.4A: Second Derivative Test: Constrained Extrema

1. It is the usual second derivative test in one-variable calculus.

§4.1A: Equilibria in Mechanics

1. \((-\frac{1}{4}, -\frac{1}{4})\)

3. (2, 1) is an unstable equilibrium.

5. Stable equilibrium point \((2 + m^2 g^2)^{-1/2} (-1, -1, -mg)\)

Solution to Exercise 3. By Theorem 14, the critical points of the potential \(V\) are the equilibrium points. These points are where the gradient vanishes. In fact,

\[
\nabla V(x, y) = (2x + 4y - 8)i + (4x - 2y - 6)j = 0
\]

only if \(2x + 4y - 8 = 0\) and \(4x - 2y - 6 = 0\). Simplifying we get the system of equations

\[
\begin{align*}
x + 2y &= 4 \\
2x - y &= 3
\end{align*}
\]

whose solution is \(x = 2, y = 1\). This critical point \((2, 1)\) will be stable if it is a strict local minimum for \(V\). Using the second test (Theorem 6), we have

\[
\frac{\partial^2 V}{\partial x^2}(2, 1) = 2, \quad \frac{\partial^2 V}{\partial y^2}(2, 1) = -2, \quad \frac{\partial^2 V}{\partial x \partial y}(2, 1) = 4.
\]

Therefore the discriminant

\[
D = \left(\frac{\partial^2 V}{\partial x^2} \right) \left(\frac{\partial^2 V}{\partial y^2} \right) - \left(\frac{\partial^2 V}{\partial x \partial y} \right)^2 = -20 < 0.
\]

The second derivative test thus tells us that the point is a saddle; in particular, we cannot conclude that the point is stable. (In fact, it is unstable, but this has not been discussed carefully, so it is best to just say the stability test fails).

§4.1B Rotations and the Sunshine Formula

1. (a) \(m_0 = (1/\sqrt{6})(i + j + 2k)\),

\(n_0 = (1/2 \sqrt{3})(i + j - k)\)

(b) \(r = [\cos(\pi t/12) / 2\sqrt{2} + \sin(\pi t/12) / 4]i + [-1/2\sqrt{2} + \cos(\pi t/12) / 2\sqrt{2} + \sin(\pi t/12) / 4]j + [-1/2\sqrt{2} + \cos(\pi t/12) / \sqrt{2} - \sin(\pi t/12) / 4]k\)
(c) \((x, y, z) = (-1/2\sqrt{2})(i + 2j + 3k) + (-\pi/48)(i + j + k)(t - 12)\)

3. \(T_d\) would be longer.

5. The “exact” formula is \(-\tan l \sin \alpha = \cos(2\pi t/T_d)[\tan(2\pi t/T_y) \tan(2\pi t/T_d) - \cos \alpha]\).

7. \(A = 9.4^\circ\)

9. The equator would receive approximately six times as much solar energy as Paris.

§4.4 Flows and the Geometry of the Divergence

1. If \(x = (x_1, x_2, x_3), \phi(x, t) = (\phi_1, \phi_2, \phi_3),\) and \(f = f(x_1, x_2, x_3, t),\) then by the chain rule,

\[
\frac{d}{dt}(f(\phi(x, t), t)) = \frac{\partial f}{\partial t}(x, t) + \sum_{i=1}^{3} \frac{\partial f}{\partial x_i}(\phi(x, t), t) \frac{\partial \phi_i}{\partial t}(x, t)
= \frac{\partial f}{\partial t}(x, t) + [\nabla f(\phi(x, t), t)] \cdot [F(\phi(x, t))].
\]

3. By the product rule,

\[
\frac{d}{dt} v \cdot w = \frac{dv}{dt} \cdot w + v \cdot \frac{dw}{dt}.
\]

Substitute equation (2) into this. For the last equality, use the identity

\(A^T v \cdot w = v \cdot Aw.\)

5. By the choice of axes,

\(w = \frac{1}{2}(\nabla \times F)(0) = \omega k.\)

From the text,

\(v = -\omega y i + \omega x j\)

and therefore

\[
\text{Dv}(0) = \begin{bmatrix} b0 & -\omega & 0 \\ \omega & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]
On the other hand, by the definitions of W and $\nabla \times F$,

$$\begin{bmatrix}
 b_1 w_1 & w_1 2 & w_1 3 \\
 b_2 w_2 & w_2 2 & w_2 3 \\
 b_3 w_3 & w_3 2 & w_3 3
\end{bmatrix}
= \begin{bmatrix}
 0 & 1/2 (\partial F_1 - \partial F_2) & 1/2 (\partial F_1 - \partial F_3) \\
 1/2 (\partial F_2 - \partial F_3) & 0 & 1/2 (\partial F_2 - \partial F_3) \\
 1/2 (\partial F_3 - \partial F_1) & 1/2 (\partial F_3 - \partial F_1) & 0
\end{bmatrix}
= \frac{1}{2}
\begin{bmatrix}
 0 & -(\nabla \times F)_z & (\nabla \times F)_y \\
 (\nabla \times F)_z & 0 & -(\nabla \times F)_x \\
 -(\nabla \times F)_y & (\nabla \times F)_x & 0
\end{bmatrix}
$$

Our choice of coordinate axes gives

$$W = \begin{bmatrix} 0 & -\omega & 0 \\
\omega & 0 & 0 \\
0 & 0 & 0 \end{bmatrix}.$$

To interpret the result, we note that the vector field v represents rotation around a fixed axis w. The flow $\psi(x,t)$ of v rotates points in this field, and, for fixed t, its derivative $D_x \psi(x,t)$ rotates vectors as well. Let Y be an arbitrary vector and set $Y(t) = D_x \psi(x,t)Y$. As t increases or decreases, $Y(t)$ rotates around w and

$$\frac{dY}{dt} \bigg|_{t=0} = D_x \psi(0)Y.$$

This gives the rate of change of Y as it is transported (rotated) by $D_x \psi$. By Exercise 3, the rate of change of any vector x at the origin under transport by the derivative of the flow $\phi(x,t)$ of F is given by

$$\frac{dx}{dt} \bigg|_{t=0} = D_x F(0)x = (S + W)x.$$

Thus this rate of change of x has two components: the deformation matrix, which affects inner products, and the W matrix. Thus the W matrix is precisely the rate of change of vectors as they undergo an infinitesimal rotation around the axis $\text{curl} F(0) = (\nabla \times F)(0)$ by the mapping $D_x \psi(x,t)$.

[The deformation matrix S incorporates all the length and angle changes caused by the flow. In particular, volume changes are contained in S. In fact, the trace of S is the divergence; $\text{tr} S = \text{div} F(x)$.]
The trace of a matrix is the sum of its diagonal entries. The trace-free part of \(S \),
\[
S' = S - \frac{1}{3} (trS) I
\]
where \(I \) is the \(3 \times 3 \) identity, is called the shear.

7. The line \(x + \lambda v \) is carried to the curve \(\lambda \mapsto \phi(x + \lambda v, t) \) after time \(t \), which for \(\lambda \) small, is approximated by its tangent line, namely, \(\lambda \mapsto \phi(x, t) + D_x \phi(x, t) \cdot \lambda v \).

§5.6 Some Technical Integration Theorems

1. If \(a \neq b \), let \(\epsilon = |a - b|/2 \).

3. Let \(e = 2d - c \), so that \(d = (c + e)/2 \). Consider the vertical “doubling” of \(R \) defined by \(Q = R \cup R_1 \), where \(R_1 = [a, b] \times [d, e] \). If \(f \) is extended to \(Q \) by letting \(f \) be 0 on the added part, then \(f \) is integrable over \(Q \) by additivity. The \(n \)th regular partition of \([(a + b)/2, b] \times [c, d] \) is part of the \(2n \)th regular partition of \(Q \). For large \(n \), the Riemann sums for that \(2n \)th partition cannot vary by more than \(\epsilon \) as we change the points from the subrectangles, in particular if we change only those in \([(a + b)/2, b] \times [c, d] \). These changes correspond to the possible changes for the Riemann sums for the \(n \)th partition of \([(a + b)/2, b] \times [c, d] \). The argument for part (b) is similar.

5. Let \(R = [a, b] \times [c, d] \) and \(B = [e, f] \times [g, h] \). Since the rectangles of a partition of \(R \) intersect only along their edges, their areas can be added, and \(b_n \) is the area of the union of all subrectangles of the \(n \)th regular partition of \(R \) that intersect \(B \). Since \(B \) is contained in this union, area \((B) \leq b_n \). On the other hand, if \((x, y) \) is in the union, then
\[
e - (b - a)/n \leq x \leq f + (b - a)/n
\]
and
\[
g - (d - c)/n \leq y \leq h + (d - c)/n.
\]
This leads to
\[
b_n \leq \text{area}(B) + 2[(b - a)(h - g) + (d - c)(f - e)]/n + 4(a - b)(d - c)/n^2.
\]
Letting \(n \to \infty \) and combining the inequalities proves the assertion.

7. (a) The strategy is to go from point to point within \([a, b]\) by short steps, adding up the changes as you go. Given \(\epsilon > 0 \), \(\phi \) is uniformly continuous and therefore there exists a \(\delta > 0 \) such that \(|\phi(x) - \phi(y)| \leq \epsilon \) whenever \(|x - y| < \delta \). Let \(x \in [a, b] \) and introduce intermediate points \(a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b \).
116 Answers for the Internet Supplement

Let \(x \) with \(x_{i+1} - x_i < \delta \). This can be done with no more than \([(b-a)/\delta] + 1\) segments. By the triangle inequality,

\[
|\phi(x) - \phi(a)| \leq \sum_{i=1}^{n} |\phi(x_i) - \phi(x_{i-1})| \leq \left(\frac{b-a}{\delta + 1} \right) \epsilon.
\]

Thus \(|\phi(x)| \leq |\phi(a)| + [(b-a)/(\delta + 1)]\epsilon \) for every \(x \) in \([a, b]\).

(b) Use an argument like that for part (a), moving by short steps within the rectangle \([a, b] \times [c, d]\).

(c) This is trickier, since \(D \) may be composed of many disconnected pieces so that the short steps cannot be taken within \(D \). Nevertheless, given \(\epsilon \), there is a \(\delta \) such that \(|f(x) - f(y)| \leq \epsilon \) whenever \(x \) and \(y \) are in \(D \) and \(\|x - y\| < \delta \), by the uniform boundedness principle. Since \(D \) is bounded, we may find a large "cube" \(R \) with sides of length \(L \) such that \(D \subset R \). Partition \(R \) into subcubes by dividing each edge into \(m \) parts. The diagonal of each subcube has length \(\sqrt{n}L/m \). If we take \(m > \sqrt{n}L/\delta \), any two points in the same subcube are less than \(\delta \) apart, and there are \(m^n \) subcubes. If \(R_1, \ldots, R_n \) are those that intersect \(D \), choose \(x_i \in D \cap R_i \).

For any \(x \in D \), we have \(|f(x)| < \epsilon + \text{map}(|f(x_1)|, \ldots, |f(x)|) \).

Solution to Exercise 2(a).

Exercise 2(a). Let \(f \) be the function on the half open interval \((0, 1]\) defined by \(f(x) = 1/x \). Show that \(f \) is continuous at every point of \((0, 1]\) but not uniformly continuous.

Solution. Let \(x_0 \in (0, 1] \). Given \(\epsilon > 0 \), we must find a \(\delta > 0 \) such that whenever

\[
0 < |x - x_0| < \delta, \quad x \in (0, 1], \quad \text{then} \quad \left| \frac{1}{x} - \frac{1}{x_0} \right| < \epsilon.
\]

Notice that

\[
\left| \frac{1}{x} - \frac{1}{x_0} \right| = \frac{|x - x_0|}{|xx_0|}.
\]

If \(|x - x_0| < x_0/2 \), then \(x > x_0/2 > 0 \) and

\[
\frac{|x - x_0|}{|xx_0|} < \frac{2|x - x_0|}{x_0^2}.
\]

If \(|x - x_0| \) is also less than \(\epsilon \cdot x_0^2/2 \), then \(2|x - x_0|/x_0^2 < \epsilon. \) Thus by picking \(\delta < \min \left(x_0/2, \left(\epsilon/2 \right) \cdot x_0^2 \right) \) one has

\[
\left| \frac{1}{x} - \frac{1}{x_0} \right| < \epsilon.
\]
Thus, \(f \) is continuous at \(x_0 \). To show that \(f \) is not uniformly continuous, we suppose it were and derive a contradiction. Let \(\epsilon = 1/2 \). If \(f \) were uniformly continuous there exists a \(\delta > 0 \) such that

\[
\left| \frac{1}{x_1} - \frac{1}{x_2} \right| < \frac{1}{2}
\]

whenever \(|x_2 - x_1| < \delta \). Let \(N > 2\delta \). There for all integers \(n, m > N \)

\[
\left| \frac{1}{n} - \frac{1}{m} \right| < \frac{1}{N} + \frac{1}{N} = \frac{2}{N} < \delta.
\]

Set \(x_1 = 1/n \) and \(x_2 = 1/(n+1) \). Then

\[
\left| \frac{1}{x_1} - \frac{1}{x_2} \right| = \frac{1}{n+1} - \frac{1}{n} = 1.
\]

But 1 is not less than \(1/2 \) a contradiction. ♦

§8.5 Green’s Functions

1. (a) If \(x \in S \), then \(r''a/R = r \), so \(G = 0 \). In general, \(r = \|x - y\| \) and \(r'' = \|x - y''\| \), and therefore

\[
G = \frac{1}{4\pi} \left(\frac{R}{a \|x - y''\|} - \frac{1}{\|x - y\|} \right) \quad \text{and} \quad \nabla_x G = \frac{1}{4\pi} \left(\frac{R}{a \|x - y''\|^3} - \frac{y - x}{\|x - y\|^3} \right)
\]

and \(\nabla^2_x G = 0 \) when \(x \neq y \), just as in the analysis of equation (15)(\(x \neq y' \), since \(x \) is inside and \(y' \) is outside the sphere). Theorem 10 gives \(\nabla^2 G = \delta(x - y) - (R/a)\delta(x - y') \), but the second term is always 0, since \(x \) is never \(y' \). Therefore \(\nabla^2 G = \delta(x - y) \) for \(x \) and \(y \) in the sphere.

(b) If \(x \) is on the surface of \(S \), then \(n = x/R \) is the outward unit normal, and

\[
\frac{\partial G}{\partial n} = \frac{1}{4\pi} \left[\frac{R}{a} \nabla \left(\frac{1}{r''} \right) \cdot n - \nabla \left(\frac{1}{r} \right) \cdot n \right]
\]

\[
= \frac{1}{4\pi} \left(\frac{R}{a} \frac{y' - x}{\|y' - x\|^3} - \frac{y - x}{\|x - y\|^3} \right) \cdot n.
\]

If \(\gamma \) is the angle between \(x \) and \(y \), then \(\|x - y\|^2 = r^2 = R^2 + a^2 - 2aR \cos \gamma \) and \(\|x - y''\|^2 = r''^2 = R^2 + b^2 - 2bR \cos \gamma = (R^2/a^2)r^2 \). Then

\[
\frac{\partial G}{\partial n} = \frac{1}{4\pi r^3} \left[\frac{R}{a} \frac{y' - x}{(R/a)^3} - (y - x) \right] \cdot n.
\]
But \(\mathbf{x} \cdot \mathbf{n} = R \) and \(\mathbf{n} = \mathbf{x}/R \), and so this becomes

\[
\frac{\partial G}{\partial n} = \frac{1}{4\pi^3} \left(\frac{a^2}{R^3} \mathbf{y}' \cdot \mathbf{x} - \frac{a^2}{R} - \frac{\mathbf{y} \cdot \mathbf{x}}{R} + R \right)
\]

\[
= \frac{1}{4\pi^3 R} \left(\frac{a^2}{R^2} \|\mathbf{y}'\| R \cos \gamma - \|\mathbf{y}\| R \cos \gamma + R^2 - a^2 \right)
\]

\[
= \frac{R^2 - a^2}{4\pi R} \frac{1}{r^3} \text{ since } \|\mathbf{y}'\| = R^2/a.
\]

Integrating over the surface of the sphere,

\[
u(y) = \int_S f \frac{\partial G}{\partial n} dS
\]

\[
= \int_0^{2\pi} \int_0^{\pi} \left[f(\theta, \phi) \frac{R^2 - a^2}{4\pi R} \frac{1}{r^3} R^2 \sin \phi \right] d\phi d\theta
\]

\[
= \frac{R(R^2 - a^2)}{4\pi} \int_0^{2\pi} \int_0^{\pi} \frac{f(\theta, \phi) \sin \phi d\phi d\theta}{(R^2 + a^2 - 2aR \cos \gamma)^{3/2}}
\]

2. (a) According to equations (12) of this section, we need to show that

\[
\tilde{G}(\mathbf{x}, \mathbf{y}) = \tilde{G}(\mathbf{y}, \mathbf{x}) \tag{1}
\]

and

\[
\nabla^2 G = \delta(\mathbf{x}, \mathbf{y}). \tag{2}
\]

Define \(\mathbf{r} = \mathbf{x} - \mathbf{y} \) and \(\mathbf{r}' = R(\mathbf{x}) - \mathbf{y} \). To show (1),

\[
\tilde{G}(\mathbf{y}, \mathbf{x}) = G(\mathbf{y}, \mathbf{x}) - G(\mathbf{y}, R(\mathbf{x})) = -\frac{1}{4\pi} \|\mathbf{y} - \mathbf{x}\| + \frac{1}{4\pi} \|\mathbf{y} - R(\mathbf{x})\|.
\]

It is obvious that \(\|\mathbf{r}\| = \|\mathbf{-r}\| \), so \(\tilde{G}(\mathbf{y}, \mathbf{x}) = \tilde{G}(\mathbf{x}, \mathbf{y}) \). To show (2), we know \(\nabla G(\mathbf{x}, \mathbf{y}) = \mathbf{r}/4\pi r^3 \). Thus \(\nabla G(R(\mathbf{x}), \mathbf{y}) = \mathbf{r}'/4\pi (r')^3 \).

Then \(\nabla^2 \tilde{G} = \delta(\mathbf{x}, \mathbf{y}) - \delta(R(\mathbf{x}), \mathbf{y}) \), and

\[
\iiint_{\mathbb{R}^3} \nabla^2 \tilde{G} d\mathbf{r} = \iiint_{\mathbb{R}^3} [\delta(\mathbf{x}, \mathbf{y}) - \delta(R(\mathbf{x}), \mathbf{y})] d\mathbf{r}.
\]

If \(\mathbf{x} = \mathbf{y} \), then \(R(\mathbf{x}) \neq \mathbf{y} \), and the above integral becomes

\[
\iiint_{\mathbb{R}^3} \nabla^2 \tilde{G} d\mathbf{r} = \iiint_{\mathbb{R}^3} \delta(\mathbf{x}, \mathbf{y}) d\mathbf{r} = 1;
\]

If \(R(\mathbf{x}) = \mathbf{y} \), then \(\mathbf{x} \neq \mathbf{y} \). Make a change of variable: Let \(u = x \), \(v = y \), \(w = -z \), so \(d\mathbf{r} = dx dy dz = -du dv dw \). Now the integral
becomes
\[
\iiint_{\mathbb{R}^3} \nabla^2 \tilde{G} \, dy = - \iiint_{\mathbb{R}^3} \delta(R(x), y) \, dy
\]
\[
= - \iiint_{\mathbb{R}^3} \delta(R(x), u) (-du)
\]
\[
= \iiint_{\mathbb{R}^3} \delta(R(x), u) \, du = 1,
\]
where \(u = (u, v, w)\).

(b) Simply "stick" our Green's function into an integral:
\[
u(x) = \iiint_{\mathbb{R}^3} \tilde{G}(x, y) \rho(y) \, dy
\]
\[
= \iiint_{\mathbb{R}^3} G(x, y) \rho(y) - G(R(x), y) \rho(y) \, dy.
\]

3. (a) Use the Chain rule: \(u_t + u_{xx} = u_t \dot{\xi} + u_x \dot{x} = \dot{u} = 0\).

(b) Use \(dt/ds = 1\) and \(dx/ds = u\). The slope is equal to
\[
\frac{t(s)}{x(s)} = \frac{dt}{dx} = \frac{1}{u}.
\]
From part (a), \(u\) is a constant, therefore \(1/u\) is also a constant.
Hence the characteristic curves are straight lines.

(c) Two characteristics through \((x_1, 0)\) and \((x_2, 0)\) have equations
\[
t = [1/u_0(x_1)](x - x_1) \quad \text{and} \quad t = [1/u_0(x_2)](x - x_2),
\]
respectively. The intersection is
\[
[1/u_0(x_1)](x - x_1) = [1/u_0(x_2)](x - x_2).
\]
Simplify and get
\[
x(1/u_0(x_1) - 1/u_0(x_2)) = x_1/u_0(x_1) - x_2/u_0(x_2).
\]
Solve for \(x\):
\[
x = \frac{x_1 u_0(x_1) - x_2 u_0(x_2)}{1/u_0(x_1) - 1/u_0(x_2)} = \frac{x_1 u_0(x_2) - x_2 u_0(x_1)}{u_0(x_2) - u_0(x_1)} > 0.
\]

(d) Plug in:
\[
\bar{t} = \frac{1}{u_0(x_1)} \left(\frac{x_1 u_0(x_2) - x_2 u_0(x_1)}{u_0(x_2) - u_0(x_1)} - x_1 \right) = - \frac{x_2 + x_1}{u_0(x_2) - u_0(x_1)}.
\]
4. (a) \(\dot{u} = \frac{d}{ds}[u(x(s), t(s))] = u_x \dot{x} + u_t \dot{t} = u_x f'(u) + u_t = 0. \)

(b) If the characteristic curve \(u(x, t) = c \) (by part (a)), define \(t \) implicitly as a function of \(x \); then \(u_x + u_t (dt/dx) = 0 \). But also \(u_t + f'(u)x_x = 0 \); that is, \(u_t + f'(u)x_x = 0 \). These two equations together give \(dt/dx = 1/f'(u) = 1/f'(c) \). Therefore the curve is a straight line with slope \(1/f'(c) \).

(c) If \(x_1 < x_2, u_0(x_1) > u_0(x_2) > 0 \), and \(f'(u_0(x_1)) > f'(u_0(x_2)) > 0 \), then \(f'(u_0(x_1)) > f'(u_0(x_2)) > 0 \). The characteristic through \((x_1, 0) \) has slope \(1/f'(u_0(x_1)) \), which is less than \(1/f'(u_0(x_2)) \), (that of the characteristic through \((x_2, 0) \). So these lines must cross at a point \(P = (\bar{x}, \bar{t}) \) with \(\bar{t} > 0 \) and \(\bar{x} > x_2 \). The solution must be discontinuous at \(P \), since these two crossing lines would give it different values there.

(d) \(\bar{t} = (x_2 - x_1)/[f'(u_0(x_1)) - f'(u_0(x_2))]. \)

6. (a) Since the “rectangle” \(D \) does not touch the \(x \) axis and \(\phi = 0 \) on \(\partial D \) and outside \(D \), equation (25) becomes

\[
\int_D \int [u \phi_t + f(u) \phi_x] \, dx \, dt = 0. \tag{i}
\]

Since \((u \phi)_t + [f(u) \phi)_x = [u_t + f(u)_x] \phi + [u \phi_t + f(u) \phi_x] \), we have

\[
\int_D \int [u \phi_t + f(u) \phi_x] \, dx \, dt = \int_D \int [(u \phi)_t + (f(u) \phi)_x] \, dx \, dt
- \int_D [u_t + f(u)_x] \phi \, dx \, dt.
\]

But \(u \) is \(C^1 \) on the interior of \(D_i \), and so Exercise 4(b) says \(u_t + f(u)_x = 0 \) there. Thus

\[
\int_D \int [u \phi_t + f(u) \phi_x] \, dx \, dt = \int_D \int [(u \phi)_t + (f(u) \phi)_x] \, dx \, dt. \tag{ii}
\]

(b) By Green’s theorem,

\[
\int_D [(f(u) \phi)_x - (-u \phi)_x] \, dx \, dt = \int \partial D_i [(-u \phi)_x] \, dx \, dt,
\]

and so expression (ii) becomes

\[
\int_D [u \phi_t + f(u) \phi_x] \, dx \, dt = \int \partial D_i \phi [-u \, dx + f(u) \, dt]
\]

Adding the above for \(i = 1, 2 \) and using expression (i) gives

\[
0 = \int_{\partial D_1} \phi [-u \, dx + f(u) \, dt] + \int_{\partial D_2} \phi [-u \, dx + f(u) \, dt]
\]
8. Setting $P = g(u)\phi$ and $Q = -f(u)\phi$, applying Green's theorem on rectangular R, and using the function ϕ as in Exercise 4 shows that if u is a solution of $g(u)_t + f(u)_x = 0$, then

$$\iint_{t \geq 0} [g(u)\phi_t + f(u)\phi_x] \, dx \, dt + \int_0^t g(u_0(x))\phi(x,0) \, dx = 0.$$

This is the appropriate analogy to equation (25), defining weak solutions of $g(u)_t + f(u)_x = 0$. Thus we want u such that

$$\iint_{t \geq 0} \left(u\phi_t + \frac{1}{2} u^2 \phi_x \right) \, dx \, dt + \int_{t=0}^t u_0(x)\phi(x,0) dx = 0 \quad (i: \text{weak})$$

holds for all admissible ϕ but such that

$$\iint_{t \geq 0} \left(\frac{1}{2} u^2 \phi_t + \frac{1}{3} u^3 \phi_x \right) \, dx \, dt + \int_{t=0}^t \frac{1}{2} u_0^2(x)\phi(x,0) \, dx = 0$$

(ii: weak)

fails for some admissible ϕ. The method of Exercise 11 produces the jump condition $s[g(u)] = [f(u)]$. For (a), this is $s(u_2 - u_1) = (\frac{1}{2} u_2^2 - \frac{1}{2} u_1^2)$ or

$$s = \frac{1}{2} (u_2 + u_1). \quad (i: \text{jump})$$

For (b), it is $s \left(\frac{1}{2} u_2^2 - \frac{1}{2} u_1^2 \right) = \left(\frac{1}{3} u_2^3 - \frac{1}{3} u_1^3 \right)$ or

$$s = \frac{2}{3} \frac{u_2^2 + u_1 u_2 + u_1^2}{u_2 + u_1}. \quad (ii: \text{jump})$$
If we take for \(u_0(x) \) a (Heaviside) function defined by \(u_0(x) = 0 \) for \(x < 0 \) and \(u_0(x) = 1 \) for \(x > 0 \), we are led to consider the function \(u(x,t) = 0 \) when \(t > 2x \) and \(u(x,t) = 1 \) when \(t \leq 2x \). Thus \(u_1 = 1, u_2 = 0 \), and the discontinuity curve \(\Gamma \) is given by \(t = 2x \). Thus the jump condition (i: jump) (i.e., \(dx/dt = 1/2(u_1 + u_2) \)) is satisfied.

For any particular \(\phi \), there are numbers \(T \) and \(a \) such that \(\phi(x,t) = 0 \) for \(x \geq a \) and \(t \leq T \). Letting \(\Omega \) be the region \(0 \leq x \leq a \) and \(0 \leq t \leq T \), condition (i: weak) becomes

\[
0 = \int_\Omega \left(\phi_t + \frac{1}{2} \phi_x \right) \, dxdt + \int_0^a \phi(x,0) \, dx
\]

\[
= \int_{\partial\Omega} \left(-\phi \, dx + \frac{\phi}{2} \, dt \right) + \int_0^a \phi(x,0) \, dx
\]

\[
= -\int_0^a \phi(x,0) \, dx + \int_0^{T/2} \left[-\phi(x,2x)(-dx) + \frac{1}{2} \phi(x,2x)(-2dx) \right]
\]

\[
+ \int_0^a \phi(x,0) \, dx
\]

Thus (i: weak) is satisfied for every \(\phi \), and \(u \) is a weak solution of equation (i). However, (ii: weak) cannot be satisfied for every \(\phi \), since the jump condition (ii: jump) fails. Indeed, if we multiply (ii: weak) by 2 and insert \(u_1 \), (ii: weak) becomes

\[
0 = \int_\Omega \left(\phi_t + \frac{2}{3} \phi_x \right) \, dxdt + \int_0^a \phi(x,0) \, dx.
\]

The factor \(\frac{1}{2} \) has changed to \(\frac{2}{3} \), and the computation above now becomes

\[
0 = -\frac{1}{3} \int_0^{\pi/2} \phi(x,2x) \, dx,
\]

which is certainly not satisfied for every admissible \(\phi \).

10. For example, write \(|re^{i\theta} - z'|^2 = |re^{i\theta} - r'e^{i\theta'}|^2 = |re^{i(\theta - \theta')} - r'|^2 \), use \(e^{i\phi} = \cos \phi + i \sin \phi \), \(|z|^2 = z\bar{z} \), and multiply out.
1. (a) Let \(a, b > 0\) and let a point of mass \(m\) move along the curve in \(\mathbb{R}^3\) defined by \(c(t) = (a \cos t, b \sin t, t^2)\). Describe the curve and find the tangent line at \(t = \pi\).

(b) Find the force acting on the particle at \(t = \pi\).

(c) Define the function \(E(z)\) by

\[
E(z) = \int_0^{\pi/2} \sqrt{1 - z^2 \sin^2 t} \, dt.
\]

Find a formula for the circumference of the ellipse

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
\]

where \(0 < a < b\), in terms of \(E(z)\).
(d) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined by

$$f(x, y, z) = -z + \exp [x^2 - y^2].$$

In what directions starting from $(1, 1, 1)$ is f decreasing at 50% of its maximum rate of change?

(e) If f is a smooth function of (x, y), C is the circle $x^2 + y^2 = 1$ and D is the unit disk $x^2 + y^2 \leq 1$, is it true that

$$\int_C \sin(xy) \frac{\partial f}{\partial x} \, dx = \sin(xy) \frac{\partial f}{\partial y} \, dy = \int_D \cos(xy) \left[y \frac{\partial f}{\partial y} - x \frac{\partial f}{\partial x} \right] \, dx \, dy?$$

2. (a) Find the extrema of the function

$$f(x, y, z) = \exp [z^2 - 2y^2 + x^2]$$

subject to the two constraints $g_1(x, y, z) = 1$ and $g_2(x, y, z) = 0$, where

$$g_1(x, y, z) = x^2 + y^2, \quad g_2(x, y, z) = z^2 - x^2 - y^2.$$

(b) Suppose S is the level surface in \mathbb{R}^n given by

$$\{ x \in \mathbb{R}^n \mid g(x) = 0 \}$$

for a smooth function $g : \mathbb{R}^n \to \mathbb{R}$. Suppose $\phi : \mathbb{R} \to \mathbb{R}^n$ is a curve whose image lies in S; that is, for every $x, \phi(x) \in S$. Show that $\nabla g(\phi(0))$ is perpendicular to $\phi'(0)$.

(c) Find the minimum distance between the circle $x^2 + y^2 = 1$ and the line $x + y = 4$.

3. (a) Evaluate the integral

$$\int_0^1 \int_y^1 e^{-x^2/2} \, dx \, dy.$$

(b) Evaluate

$$\iiint_D x \, dx \, dy \, dz,$$

where D is the tetrahedron with vertices

$$(0, 0, 0), (1, 0, 0), (0, 2, 0), \left(0, 0, \frac{1}{2}\right).$$

4. Determine whether each of the following statements below is true or false. If true, justify (give a brief explanation or quote a relevant theorem from the course), and if false, give an explanation, or a Counterexample.
(a) For smooth functions f and g,
\[\text{div} (\nabla f \times \nabla g) = 0. \]

(b) There exist conservative vector fields F and G, such that
\[F \times G = (x, y, z). \]

(c) By a “symmetry” argument, the following holds
\[\int_0^1 \int_{-2}^2 \int_1^2 z - xy e^{x^2} (y^2 + 1)^{-3} (y^4 x^6 + x^2 y^7 + 5) \, dy \, dx \, dz = \int_{-\pi}^{\pi} \cos^4(t) \sin(t) \, dt. \]

(d) The surface integral of the vector field
\[F(x, y, z) = (x + y^2 + z^2) \mathbf{i} + (x^2 + y + z^2) \mathbf{j} + (x^2 + y^2 + z) \mathbf{k} \]
over the unit sphere equals 4π.

(e) If F is a smooth vector field on \mathbb{R}^3,
\[S_1 = \{(x, y, 0) \mid x^2 + y^2 \leq 1\}, \]
oriented with the upward normal and the upper hemisphere,
\[S_2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1, z \geq 0\}, \]
also oriented with the upward normal, then
\[\iint_{S_1} (\nabla \times F) \cdot dS = \iint_{S_2} (\nabla \times F) \cdot dS. \]

5. Let W be the region in \mathbb{R}^3 defined by $x^2 + y^2 + z^2 \leq 1$ and $y \leq x$.

(a) Compute
\[\iiint_W (1 - x^2 - y^2 - z^2) \, dx \, dy \, dz. \]

(b) Find the flux of the vector field $F = (x^3 - 3x) \mathbf{i} + (y^3 + xy) \mathbf{j} + (z^3 - xz) \mathbf{k}$ out of the region W.

6. (a) Verify the divergence theorem for the vector field
\[F = 4xz \mathbf{i} + y^2 \mathbf{j} + yz \mathbf{k} \]
over the surface of the cube defined by the set of (x, y, z) satisfying $0 \leq x \leq 1$, $0 \leq y \leq 1$, and $0 \leq z \leq 1$.

(b) Evaluate the surface integral \(\int_S \mathbf{F} \cdot \mathbf{n} \, dS \), where

\[
\mathbf{F}(x, y, z) = \mathbf{i} + \mathbf{j} + z(x^2 + y^2)^2 \mathbf{k},
\]

and \(S \) is the surface of the cylinder \(x^2 + y^2 \leq 1, 0 \leq z \leq 1 \), including the sides and both lids.

7. (a) Let \(D \) be the parallelogram in the \(xy \) plane with vertices \((0, 0), (1, 1), (1, 3), (0, 2)\).

Evaluate the integral

\[
\int_D xy \, dx \, dy.
\]

(b) Evaluate

\[
\iiint_D (x^2 + y^2 + z^2)^{1/2} \exp[(x^2 + y^2 + z^2)^2] \, dx \, dy \, dz,
\]

where \(D \) is the region defined by

\[
1 \leq x^2 + y^2 + z^2 \leq 4 \quad \text{and} \quad z \geq \sqrt{x^2 + y^2}.
\]

8. For each of the questions below, indicate if the statement is true or false. If true, justify (give a brief explanation or quote a relevant theorem from the course), and if false, give an explanation or a counterexample.

(a) If \(P(x, y) = Q(x, y) \), then the vector field \(\mathbf{F} = Pi + Qj \) is a gradient.

(b) The flux of any gradient out of a closed surface is zero.

(c) There is a vector field \(\mathbf{F} \) such that \(\nabla \times \mathbf{F} = yj \).

(d) If \(f \) is a smooth function of \((x, y)\), \(C \) is the circle \(x^2 + y^2 = 1 \) and \(D \) is the unit disc \(x^2 + y^2 \leq 1 \), then

\[
\int_C e^{xy} \frac{\partial f}{\partial x} \, dx + e^{xy} \frac{\partial f}{\partial y} \, dy = \iint_D e^{xy} \left[y \frac{\partial f}{\partial y} - x \frac{\partial f}{\partial x} \right] \, dx \, dy.
\]

(e) For any smooth function \(f(x, y, z) \), we have

\[
\int_0^1 \int_0^x \int_0^{x+y} f(x, y, z) \, dz \, dy \, dx = \int_0^1 \int_0^y \int_0^{x+y} f(x, y, z) \, dz \, dx \, dy.
\]

9. Let \(W \) be the three-dimensional region defined by

\[
x^2 + y^2 \leq 1, \quad z \geq 0, \quad \text{and} \quad x^2 + y^2 + z^2 \leq 4.
\]
(a) Find the volume of W.
(b) Find the flux of the vector field
\[\mathbf{F} = (2x - 3xy)\mathbf{i} - y\mathbf{j} + 3yz\mathbf{k} \]
out of the region W.

10. Let $f(x, y, z) = xye^{xy}$.

(a) Compute the gradient vector field $\mathbf{F} = \nabla f$.
(b) Let C be the curve obtained by intersecting the sphere $x^2 + y^2 + z^2 = 1$ with the plane $x = 1/2$ and let S be the portion of the sphere with $x \geq 1/2$. Draw a figure including possible orientations for C and S; state Stokes’s theorem for this region.
(c) With \mathbf{F} as in (a) and S as in (b), let $\mathbf{G} = \mathbf{F} + (z - y)\mathbf{i} + y\mathbf{k}$, and evaluate the surface integral
\[\int\int_S (\nabla \times \mathbf{G}) \cdot d\mathbf{S}. \]
Solutions to Practice Final Examination

1. (a) Let $a, b > 0$ and let a point of mass m move along the curve in \mathbb{R}^3 defined by \(c(t) = (a \cos t, b \sin t, t^2) \). Describe the curve and find the tangent line at $t = \pi$.

Solution. This is a *stretched elliptical helix*. The derivative is
\[
c'(t) = (-a \sin t, b \cos t, 2t).
\]
The tangent line is
\[
l(t) = c(\pi) + tc'(\pi) \\
= (-a, 0, \pi^2) + t(0, -b, 2\pi) \\
= (-a, -tb, \pi^2 + 2t\pi).
\]

(b) Find the force acting on the particle at $t = \pi$.

Solution. The acceleration is
\[
c''(t) = (-a \cos t, -b \sin t, 2),
\]
so $c''(\pi) = (a, 0, 2)$. Thus, the force is $F = ma = m(a, 0, 2)$. ♦
(c) Define the function \(E(z) \) by
\[
E(z) = \int_{0}^{\pi/2} \sqrt{1 - z^2 \sin^2 t} \, dt.
\]
Find a formula for the circumference of the ellipse
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
\]
where \(0 < a < b \), in terms of \(E(z) \).

Solution. The circumference of the ellipse is
\[
C = 4 \int_{0}^{\pi/2} \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt.
\]
Now substitute \(\cos^2 t = 1 - \sin^2 t \), and pull out a factor of \(b \) to give the final desired formula:
\[
C = 4bE(\sqrt{1 - (a^2/b^2)}).
\]

(d) Let \(f : \mathbb{R}^3 \to \mathbb{R} \) be defined by
\[
f(x, y, z) = -z + \exp[x^2 - y^2].
\]
In what directions starting from \((1, 1, 1)\) is \(f \) decreasing at 50% of its maximum rate of change?

Solution. The gradient is
\[
\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)
= (2x \exp(x^2 - y^2), -2y \exp(x^2 - y^2), -1).
\]
Thus, the direction of fastest decrease at \((1, 1, 1)\) is \(-\nabla f(1, 1, 1) = (-2, 2, 1)\). Suppose now that \(\mathbf{n} \) is the direction that \(f \) decreases at 50% of its maximum rate and \(||\mathbf{n}|| = 1 \). Then, because the rate of change of \(f \) in the direction \(\mathbf{n} \) at the point \((1, 1, 1)\) is \(\mathbf{n} \cdot \nabla f(1, 1, 1) \), we get
\[
\mathbf{n} \cdot (-\nabla f(1, 1, 1)) = \frac{1}{2} || -\nabla f(1, 1, 1)||.
\]
Let the angle between n and $-\nabla f(1, 1, 1)$ be denoted θ (taken to be the acute angle). Then from the preceding discussion,

$$\cos \theta \|n\| \cdot \|-\nabla f(1, 1, 1)\| = \frac{1}{2} \|-\nabla f(1, 1, 1)\|.$$

Thus, $\cos \theta = 1/2$, so $\theta = \pi/3$. Therefore, the directions are those that make an angle of $\pi/3$ with the vector $(-2, 2, 1)$; that is, a cone centered on the vector $(-2, 2, 1)$ with a base angle of $2\pi/3$.

(e) If f is a smooth function of $(x, y), C$ is the circle $x^2 + y^2 = 1$ and D is the unit disc $x^2 + y^2 \leq 1$, is it true that

$$\int_C \sin (xy) \frac{\partial f}{\partial x} \, dx + \sin (xy) \frac{\partial f}{\partial y} \, dy = \int\int_D \cos (xy) \left[y \frac{\partial f}{\partial y} - x \frac{\partial f}{\partial x} \right] \, dx \, dy?$$

Solution. Yes, this is true. Let

$$P = \sin (xy) \frac{\partial f}{\partial x} \quad \text{and} \quad Q = \sin (xy) \frac{\partial f}{\partial y}$$

and apply Green’s theorem:

$$\int_C P \, dx + Q \, dy = \int\int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.$$

We have

$$\frac{\partial Q}{\partial x} = y \cos xy \frac{\partial f}{\partial y} + \sin (xy) \frac{\partial^2 f}{\partial x \partial y}$$

and

$$\frac{\partial P}{\partial y} = x \cos xy \frac{\partial f}{\partial x} + \sin (xy) \frac{\partial^2 f}{\partial x \partial y}.$$

The terms containing second derivatives of f cancel, so one gets the desired result.

2. (a) Find the extrema of the function

$$f(x, y, z) = \exp [z^2 - 2y^2 + x^2],$$

subject to the two constraints $g_1(x, y, z) = 1$ and $g_2(x, y, z) = 0$, where

$$g_1(x, y, z) = x^2 + y^2, \quad g_2(x, y, z) = z^2 - x^2 - y^2.$$
Solution. We present two possible solutions.

Method 1. The first method uses Lagrange multipliers. According to the Lagrange multiplier method, the extrema are among the solutions of the equations

\[g_1(x, y, z) = 1 \]
\[g_2(x, y, z) = 0 \]
\[\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2. \]

This gives the five equations

\[x^2 + y^2 = 1 \]
\[z^2 - x^2 - y^2 = 0 \]
\[2xf = 2x\lambda_1 - 2x\lambda_2 \]
\[-4yf = 2y\lambda_1 - 2y\lambda_2 \]
\[2zf = 2z\lambda_2. \]

Because \(f > 0 \) and, from the first two equations, \((x, y) \neq (0, 0) \), so \(z \neq 0 \). Thus, from the last equation, \(f = \lambda_2 \). There are two cases:

i. \(y \neq 0 \): Here \(\lambda_1 = -f \) from the fourth equation. Substituting into the third equation gives \(x = 0 \). Thus, \(y = \pm 1 \) and \(z = \pm 1 \).

ii. \(x \neq 0 \): Here from the third equation, \(\lambda_1 = 2f \). Substituting into the fourth equation gives \(y = 0 \). Thus, \(x = \pm 1 \) and \(z = \pm 1 \).

Evaluating \(f \) at each of the eight-candidate gives a minimum of \(e^{-1} \) at the four points \((0, \pm 1, \pm 1)\) and a maximum of \(e^2 \) at the four points \((\pm 1, 0, \pm 1)\).

Method 2. The constraint set is the collection of two circles

\[x^2 + y^2 = 1, z = 1 \] and \[x^2 + y^2 = 1, z = -1. \]

Thus, we are extremizing the function \(h(x, y) = \exp[1-2y^2+x^2] \) over the circle \(x^2 + y^2 = 1 \). That is, the function \(k(y) = \exp[2-3y^2] \) for \(y \) between \(-1\) and \(1 \). Thus, because the function \(k(y) \) is decreasing in \(y^2 \), the maximum of \(e^2 \) occurs at \((\pm 1, 0, \pm 1)\) and the minimum of \(e^{-1} \) occurs at \((0, \pm 1, \pm 1)\).

(b) Suppose \(S \) is the level surface in \(\mathbb{R}^n \) given by

\[\{ x \in \mathbb{R}^n \mid g(x) = 0 \} \]

for a smooth function \(g : \mathbb{R}^n \to \mathbb{R} \). Suppose \(\phi : \mathbb{R} \to \mathbb{R}^n \) is a curve whose image lies in \(S \); that is, for every \(x, \phi(x) \in S \). Show that \(\nabla g(\phi(0)) \) is perpendicular to \(\phi'(0) \).
Solution. The chain rule applied to \(g(\phi(t)) = 0 \) gives the equality \(\nabla g(\phi(0)) \cdot \phi'(0) = 0 \), which proves the assertion.

(c) Find the minimum distance between the circle \(x^2 + y^2 = 1 \) and the line \(x + y = 4 \).

Solution. We wish to minimize the square of the distance function from a point \((x, y)\) on the circle to a point \((u, v)\) on the line, namely, \(f(x, y, u, v) = (x - u)^2 + (y - v)^2 \), subject to the constraints

\[
\begin{align*}
g_1(x, y, u, v) &= x^2 + y^2 - 1 = 0 \\
g_2(x, y, u, v) &= u + v - 4 = 0.
\end{align*}
\]

The Lagrange multiplier method gives

\[
\begin{align*}
g_1 &= 0 \\
g_2 &= 0 \\
\nabla f &= \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2,
\end{align*}
\]

which gives the following six equations

\[
\begin{align*}
x^2 + y^2 &= 1 \\
u + v &= 4 \\
2(x - u) &= 2\lambda_1 x \\
2(y - v) &= 2\lambda_1 y \\
-2(x - u) &= \lambda_2 \\
-2(y - v) &= \lambda_2.
\end{align*}
\]

First, notice that \(\lambda_1 \neq 0 \), for then we would get \(x = u, y = v \), which cannot happen since the line does not intersect the circle. Hence

\[
x = \frac{x - u}{\lambda_1} = -\frac{1}{2}\frac{\lambda_2}{\lambda_1} = \frac{y - v}{\lambda_1} = y.
\]

Substituting \(x = y \) into the last two of the preceding equations gives \(u = v \) as well. From the first and second equations, we find that the potential extrema are located at \(x = y = \pm \sqrt{2}/2 \). Plugging these values into the distance function, we find the values

\[
d_1 = \sqrt{\left(-\frac{\sqrt{2}}{2} - 2\right)^2 + \left(-\frac{\sqrt{2}}{2} - 2\right)^2} = 2\sqrt{2} + 1
\]
and
\[
d_2 = \sqrt{\left(\frac{\sqrt{2}}{2} - 2\right)^2 + \left(\frac{\sqrt{2}}{2} - 2\right)^2} = 2\sqrt{2} - 1.
\]
Thus, the minimum distance is \(2\sqrt{2} - 1\).

One can also do this problem geometrically by drawing the line and the circle and the line orthogonal to them, both to compute the intersection points and then calculate the distance between them. However, in this method, one has to be very careful to justify the method.

3. Evaluate the integral
\[
\int_0^1 \int_y^1 e^{-x^2/2} \, dx \, dy.
\]

Drawing a figure and switching the order of integration:
\[
\int_0^1 \int_y^1 e^{-x^2/2} \, dx \, dy = \int_0^1 \int_0^x e^{-x^2/2} \, dy \, dx = \int_0^1 xe^{-x^2/2} \, dx = 1 - e^{-1/2}.
\]

Solution. Evaluate
\[
\int \int \int_D x \, dx \, dy \, dz,
\]
where \(D\) is the tetrahedron with vertices
\[(0, 0, 0), (1, 0, 0), (0, 2, 0), \left(0, 0, \frac{1}{2}\right).
\]

Solution. First compute or observe that the plane \(x + \frac{1}{2}y + 2z = 1\) contains the tetrahedral face passing through the points
\[(1, 0, 0), (0, 2, 0), \left(0, 0, \frac{1}{2}\right).
\]
Thus, one gets
\[
\int \int \int_D x \, dx \, dy \, dz = \int_0^1 \int_0^{2-2x} \int_0^{1/2-1/2x-1/4y} x \, dz \, dy \, dx
\]
\[
= \int_0^1 \int_0^{2-2x} x - x^2 - \frac{xy}{4} \, dy \, dx
\]
\[
= \int_0^1 \left(\frac{x}{2} - x^2 + \frac{x^3}{2}\right) \, dx
\]
\[
= \frac{1}{24}.
\]
4. Determine whether each of the following statements below is **True** or **False**. If true, **Justify** (give a brief explanation or quote a relevant theorem from the course), and if false, give an explanation, or a **Counterexample**.

(a) For smooth functions \(f\) and \(g\),
\[
\text{div}(\nabla f \times \nabla g) = 0.
\]

Solution. This is one of the vector identities; it is true and follows by equality of mixed partials. In fact,
\[
\nabla f \times \nabla g = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial z}
\end{vmatrix}
= \left(\frac{\partial f}{\partial y} \frac{\partial g}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial g}{\partial y} \right) \mathbf{i}
- \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial g}{\partial x} \right) \mathbf{j}
+ \left(\frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} \right) \mathbf{k}.
\]
After taking the divergence, we see that all terms cancel (the student should be prepared to say which terms cancel with which terms).

(b) There exist conservative vector fields \(F\) and \(G\), such that
\[
F \times G = (x, y, z).
\]

Solution. This is false. By part (a), the left side has zero divergence, but the right side clearly does not (its divergence is 3).

(c) By a “symmetry” argument, the following holds
\[
\int_{-2}^{2} \int_{-1}^{1} \int_{0}^{2} z^{-1} xy e^{x^2} (y^2 + 1)^{-3} 2(y^4 x^6 + x^8 y^7 + 5) \, dy \, dx \, dz
= \int_{-\pi}^{\pi} \cos^4(t) \sin(t) \, dt
\]

Solution. This is true; both sides are zero by symmetry; the first is odd in the \(x\)-integral and the second is zero because it is an odd function of \(t\).
(d) The surface integral of the vector field
\[F(x, y, z) = (x + y^2 + z^2) \mathbf{i} + (x^2 + y + z^2) \mathbf{j} + (x^2 + y^2 + z) \mathbf{k} \]
over the unit sphere equals \(4\pi \).

Solution. This is true. By the divergence theorem, the flux is the integral of the divergence. But the divergence is the constant 3, so the integral over the unit ball is \(3 \times (4\pi)/3 = 4\pi \). ♦

(e) If \(F \) is a smooth vector field on \(\mathbb{R}^3 \),
\[S_1 = \{ (x, y, 0) \mid x^2 + y^2 \leq 1 \}, \]
oriented with the upward normal and the upper hemisphere,
\[S_2 = \{ (x, y, z) \mid x^2 + y^2 + z^2 = 1, z \geq 0 \}, \]
also oriented with the upward normal, then
\[\int S_1 (\nabla \times F) \cdot dS = \int S_2 (\nabla \times F) \cdot dS. \]

Solution. This is true. By Stokes’ theorem, both sides equal the integral of \(F \) around the common boundary, the unit circle in the plane. One can also do this by Gauss’ theorem by writing the difference of the two sides as the surface integral over the boundary of the region enclosed, invoking the divergence theorem and using the fact that the divergence of a curl is zero. ♦

5. Let \(W \) be the region in \(\mathbb{R}^3 \) defined by \(x^2 + y^2 + z^2 \leq 1 \) and \(y \leq x \).

(a) Compute
\[\iiint_W (1 - x^2 - y^2 - z^2) \, dx \, dy \, dz. \]

Solution. Consider spherical coordinates in \(\mathbb{R}^3 \):
\[x = r \cos \theta \sin \phi \]
\[y = r \sin \theta \sin \phi \]
\[z = r \cos \phi, \]
with
\[r \in [0, \infty), \quad \phi \in [0, \pi), \quad \theta \in [-\pi, \pi]. \]
We can rewrite the conditions
\[x^2 + y^2 + z^2 \leq 1 \quad \text{and} \quad y \leq x \]
as
\[(r \leq 1) \quad \text{and} \quad (r \sin \theta \sin \phi \leq r \cos \theta \sin \phi), \]
which is equivalent (because \(\sin \phi \) is nonnegative for \(\phi \in [0, \pi] \)) to:
\[(r \leq 1), (\sin \theta \leq \cos \theta) \quad \text{or, equivalently} \quad r \in [0, 1], \phi \in [0, \pi], \theta \in [-3\pi/4, \pi/4]. \]
Therefore, the region \(W \) is defined, in spherical coordinates, by \(r \in [0, 1], \phi \in [0, \pi], \theta \in [-3\pi/4, \pi/4]. \)

One can also see these limits by drawing the figure containing the ball \(x^2 + y^2 + z^2 \leq 1 \) and the half-space \(y \leq x \) and the corresponding region in the \(xy \) plane consisting of unit disk cut by the half-plane \(y \leq x \).

Now we can compute
\[
\int\int\int_W (1 - x^2 - y^2 - z^2) \, dx \, dy \, dz
= \int_0^1 \int_0^\pi \int_{-3\pi/4}^{\pi/4} (1 - r^2) \, r^2 \sin \phi \, d\theta \, d\phi \\
= \int_0^1 (r^2 - r^4) \, dr \int_0^\pi \sin \phi \, d\phi \int_{-3\pi/4}^{\pi/4} d\theta = \frac{2}{15} \cdot 2 \cdot \pi = \frac{4\pi}{15}. \]

(b) Find the flux of the vector field \(\mathbf{F} = (x^3 - 3x)\mathbf{i} + (y^3 + xy)\mathbf{j} + (z^3 - xz)\mathbf{k} \) out of the region \(W \).

Solution. Let’s first compute
\[
\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} (x^3 - 3x) + \frac{\partial}{\partial y} (y^3 + xy) + \frac{\partial}{\partial z} (z^3 - xz) = 3x^2 + 3y^2 + 3z^2 - 3.
\]
Now, using Gauss’ divergence theorem (and invoking part (a)), we get that the flux of \(\mathbf{F} \) out of the region \(W \) is
\[
\int\int\int_{\partial W} \mathbf{F} \cdot d\mathbf{S} = \int\int\int_W (\nabla \cdot \mathbf{F}) \, dV \\
= \int\int\int_W (3x^2 + 3y^2 + 3z^2 - 3) \, dx \, dy \, dz \\
= (-3) \int\int\int_W (1 - x^2 - y^2 - z^2) \, dx \, dy \, dz \\
= (-3) \frac{4\pi}{15} = \frac{-4\pi}{5}. \]
6. (a) Verify the divergence theorem for the vector field
\[\mathbf{F} = 4xz \mathbf{i} + y^2 \mathbf{j} + yz \mathbf{k} \]
over the surface of the cube defined by the set of \((x, y, z)\) satisfying \(0 \leq x \leq 1\), \(0 \leq y \leq 1\), and \(0 \leq z \leq 1\).

Solution. First of all, the divergence theorem states that
\[
\iiint_{W} \text{div} \mathbf{F} \, dV = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS,
\]
where \(S\) is the surface of the cube and \(W\) is the cube itself. We evaluate each side and check that they are equal. The right-hand side is, in this case,
\[
\iint_{W} \text{div} \mathbf{F} \, dV = \int_{0}^{1} \int_{0}^{1} (4z + 3y) \, dx \, dy = 2 + \frac{3}{2} = \frac{7}{2}.
\]
The left-hand side can be evaluated by writing
\[S = S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \cup S_6, \]
where
\begin{align*}
S_1 & : 0 \leq y, z \leq 1, x = 0, \mathbf{n}_1 = (-1, 0, 0) \\
S_2 & : 0 \leq y, z \leq 1, x = 1, \mathbf{n}_2 = (1, 0, 0) \\
S_3 & : 0 \leq x, z \leq 1, y = 0, \mathbf{n}_3 = (0, -1, 0) \\
S_4 & : 0 \leq x, z \leq 1, y = 1, \mathbf{n}_4 = (0, 1, 0) \\
S_5 & : 0 \leq x, y \leq 1, z = 0, \mathbf{n}_5 = (0, 0, -1) \\
S_6 & : 0 \leq x, y \leq 1, z = 1, \mathbf{n}_6 = (0, 0, 1).
\end{align*}
Thus, we get
\[
\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \sum_{i=1}^{6} \iint_{S_i} \mathbf{F} \cdot \mathbf{n} \, dS
\]
\[
= 0 + \int_{0}^{1} \int_{0}^{1} 4z \, dy \, dz + 0 + \int_{0}^{1} \int_{0}^{1} dx \, dz + 0 + \int_{0}^{1} \int_{0}^{1} y \, dy \, dx
\]
\[
= 2 + 1 + \frac{1}{2} = \frac{7}{2}.
\]
Thus, both sides are equal, so the divergence theorem checks in this case.
(b) Evaluate the surface integral $\int \int_S \mathbf{F} \cdot \mathbf{n} \, dS$, where
\[
\mathbf{F}(x, y, z) = \mathbf{i} + \mathbf{j} + z(x^2 + y^2)^2 \mathbf{k},
\]
and S is the surface of the cylinder $x^2 + y^2 \leq 1, 0 \leq z \leq 1$, including the sides and both lids.

Solution. Use Gauss’ divergence theorem in space:
\[
\int \int_S \mathbf{F} \cdot \mathbf{n} \, dS = \int \int \int_W (\text{div} \, \mathbf{F}) \, dx \, dy \, dz.
\]
Here,
\[
\text{div} \, \mathbf{F} = \frac{\partial}{\partial x} (1) + \frac{\partial}{\partial y} (1) + \frac{\partial}{\partial z} z(x^2 + y^2)^2 = (x^2 + y^2)^2.
\]
The region W is a cylinder, so it is the easiest to evaluate the integral in cylindrical coordinates:
\[
\int_0^1 \int_0^{2\pi} \int_0^1 r \cdot (r^2)^2 \, dr \, d\theta \, dz = 2\pi \frac{2\pi}{6} = \frac{\pi}{3}.
\]

7. (a) Let D be the parallelogram in the xy plane with vertices $(0, 0), (1, 1), (1, 3), (0, 2)$.

Evaluate the integral $\int \int_D xy \, dx \, dy$.

Solution. The region is y-simple with sides given by the lines $x = 0$ and $x = 1$, and top and bottom by the lines $y = x$ and $y = x + 2$. Therefore, the integral is
\[
\int \int_D xy \, dx \, dy = \int_0^1 \int_x^{x+2} xy \, dy \, dx
\]
\[
= \int_0^1 x (\frac{(x + 2)^2}{2} - \frac{x^2}{2}) \, dx
\]
\[
= \int_0^1 2(x^2 + x) \, dx
\]
\[
= \frac{2}{3} x^3 + x^2 \bigg|_0^1 = \frac{5}{3}.
\]
(b) Evaluate
\[
\int\int\int_D \left(x^2 + y^2 + z^2 \right)^{1/2} \exp \left[(x^2 + y^2 + z^2)^2 \right] \, dx \, dy \, dz,
\]
where

\[D\] is the region defined by

\[1 \leq x^2 + y^2 + z^2 \leq 4 \text{ and } z \geq \sqrt{x^2 + y^2}.\]

\textbf{Solution.} One should first draw a sketch. The region in question is that between two spheres and inside a cone centered around the \(z\) axis. By drawing a careful figure and using a little trigonometry, one finds that a side of the cone makes an angle of \(\pi/4\) with the \(z\) axis.

Denoting the integral required by \(I\), we get
\[
I = \int_0^{2\pi} \int_0^{\pi/4} \int_1^{2} \rho (e^{\rho^4}) \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta
\]
\[
= 2\pi \left(1 - \frac{1}{\sqrt{2}} \right) \int_1^{2} e^{\rho^4} \rho^3 \, d\rho
\]
\[
= \frac{\pi}{2} \left(1 - \frac{1}{\sqrt{2}} \right) \left[e^{\rho^4} \right]_1^2
\]
\[
= \frac{\pi}{2} \left(1 - \frac{1}{\sqrt{2}} \right) (e^{16} - e).\]

8. For each of the questions below, indicate if the statement is \textbf{true} or \textbf{false}. If true, justify (give a brief explanation or quote a relevant theorem from the course), and if false, give an explanation or a counterexample.

(a) If \(P(x, y) = Q(x, y)\), then the vector field \(F = Pi + Qj\) is a gradient.

\textbf{Solution.} This is false. For example,
\[
x i + x j
\]

is not a gradient because it fails to satisfy the cross-derivative test.

(b) The flux of any gradient out of a closed surface is zero.
Solution. This is false. For example, the vector field

$$\mathbf{F}(\mathbf{r}) = \mathbf{r}$$

is the gradient of $f(\mathbf{r}) = \|\mathbf{r}\|^2/2$, yet its flux out of the unit sphere is, either by direct evaluation of the surface integral, or by the divergence theorem, 4π.

(c) There is a vector field \mathbf{F} such that $\nabla \times \mathbf{F} = y\mathbf{j}$.

Solution. This is false. We know that $\text{div}\ \text{curl} \ \mathbf{F} = 0$ for all vector fields \mathbf{F}, but $\text{div}(y\mathbf{j}) = 1$, and so no such \mathbf{F} can exist.

(d) If f is a smooth function of $(x, y), C$ is the circle $x^2 + y^2 = 1$ and D is the unit disc $x^2 + y^2 \leq 1$, then

$$\int_C e^{xy} \frac{\partial f}{\partial x} \, dx + e^{xy} \frac{\partial f}{\partial y} \, dy = \int \int_D e^{xy} \left[y \frac{\partial f}{\partial y} - x \frac{\partial f}{\partial x}\right] \, dx \, dy.$$

Solution. This is true. To see why, let

$$P(x, y) = e^{xy} \frac{\partial f}{\partial x} \quad \text{and} \quad Q(x, y) = e^{xy} \frac{\partial f}{\partial y},$$

so that the left-hand side of the expression in the problem is the line integral of $P \, dx + Q \, dy$. By Green’s theorem we have

$$\int_C P \, dx + Q \, dy = \int \int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \, dx \, dy.$$

To work out the right-hand side in Green’s theorem, we calculate the partial derivatives:

$$\frac{\partial Q}{\partial x} = ye^{xy} \frac{\partial f}{\partial y} + e^{xy} \frac{\partial^2 f}{\partial x \partial y},$$

$$\frac{\partial P}{\partial y} = xe^{xy} \frac{\partial f}{\partial x} + e^{xy} \frac{\partial^2 f}{\partial y \partial x}.$$

By the equality of mixed partials for f, we get the desired equality from Green’s theorem.

(e) For any smooth function $f(x, y, z)$, we have

$$\int_0^1 \int_0^x \int_0^{x+y} f(x, y, z) \, dz \, dy \, dx = \int_0^1 \int_0^y \int_0^{x+y} f(x, y, z) \, dz \, dx \, dy.$$
Solution. The left-hand side represents the volume integral of \(f \) over the region \(W \) that is between the \(xy \) plane and the plane \(z = x + y \), and over the region in the \(xy \) plane bounded by the \(x \) axis, the line \(x = 1 \), and the line \(x = y \). The right-hand side represents the volume integral of \(f \) over the region \(W \) that is between the \(xy \) plane and the plane \(z = x + y \), and over the region in the \(xy \) plane bounded by the \(x \) axis, the line \(y = 1 \), and the line \(x = y \). The student should draw a sketch of these two regions in the \(xy \) plane. One sees that these two regions are different, so the two integrals need not be equal. Thus, the assertion is false.

9. Let \(W \) be the three-dimensional region defined by

\[
x^2 + y^2 \leq 1, \quad z \geq 0, \quad \text{and} \quad x^2 + y^2 + z^2 \leq 4.
\]

(a) Find the volume of \(W \).

Solution 1. The student should draw a sketch. Setting up the volume as a triple integral, one gets

\[
\text{Volume} = V = \iiint_W \, dx \, dy \, dz
\]

\[
= \iint_D \int_0^\sqrt{4-x^2-y^2} \, dz \, dy \, dx
\]

\[
= \iint_D \sqrt{4-x^2-y^2} \, dy \, dx,
\]

where \(D \) is the unit disc in the \(xy \) plane. Changing variables to polar coordinates gives

\[
V = \int_0^1 \int_0^{2\pi} \sqrt{4-r^2} \, r \, dr \, d\theta
\]

\[
= 2\pi \int_0^1 \sqrt{4-r^2} \, r \, dr.
\]

This is now integrated using substitution, and after a little computation, one gets the answer

\[
V = \frac{2\pi}{3} (8 - 3\sqrt{3}).
\]

Solution 2. The student should draw a sketch. Using evident notation, we have

\[
V(W) = V(\text{cap}) + V(\text{cylinder of height } h),
\]
where the region is divided into a cylinder with a certain height h and the portion of the sphere above it. Now

$$V(\text{cyl.}) = A(\text{base}) \cdot \text{height} = \pi \cdot h.$$

To determine h, note that h is the value of z where the cylinder $x^2 + y^2 = 1$ and the sphere $x^2 + y^2 + z^2 = 4$ intersect. At such an intersection, $1 + z^2 = 4$, and so $z^2 = 3$, that is, $z = \sqrt{3} = h$. Therefore,

$$V(\text{cyl.}) = \pi \sqrt{3}.$$

To find the volume of the cap, we think of it as a capped cone minus a cone with a flat top. We can find the volume of the capped cone using spherical coordinates, and we know the volume of the cone with the flat top (the base) is $\frac{1}{3} A(\text{base}) \cdot \text{height}$. First of all, using spherical coordinates,

$$V(\text{capped cone}) = \int_0^{2\pi} \int_0^\pi \int_0^2 \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta.$$

To find φ_0, refer to the figure that we suggested be drawn for this problem, and one sees that for the relevant right triangle,

$$\cos \varphi_0 = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{\sqrt{3}}{2} \quad \text{and so} \quad \varphi_0 = \frac{\pi}{6}.$$

Therefore,

$$V(\text{capped cone}) = \int_0^{2\pi} \int_0^{\pi/6} \int_0^2 \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = \frac{16\pi}{3} \left(1 - \frac{\sqrt{3}}{2}\right).$$

However,

$$V(\text{cone with the flat top}) = \frac{1}{3} \text{Area of base times height} \quad = \frac{1}{3} \pi \sqrt{3} = \frac{\pi \sqrt{3}}{3}.$$

Therefore,

$$V(\text{cap}) = \frac{16\pi}{3} - \frac{8\pi \sqrt{3}}{3} - \frac{\pi \sqrt{3}}{3}$$

and finally,

$$V(W) = \frac{16\pi}{3} - \frac{8\pi \sqrt{3}}{3} - \frac{\pi \sqrt{3}}{3} + \frac{3\pi \sqrt{3}}{3}$$

$$= \frac{16\pi}{3} - \frac{6\pi \sqrt{3}}{3} = \frac{2\pi}{3} (8 - 3\sqrt{3}).$$
(b) Find the flux of the vector field \(\mathbf{F} = (2x - 3xy)i - yj + 3yzk \) out of the region \(W \).

Solution. The flux is given by
\[
\iint_{\partial W} \mathbf{F} \cdot d\mathbf{S}.
\]
To compute this, we use the divergence theorem, which gives
\[
\iint_{\partial W} \mathbf{F} \cdot d\mathbf{S} = \iiint_{W} \text{div} \mathbf{F} \, dV = \iiint_{W} (2 - 3y - 1 + 3y) \, dV = V(W) = \frac{2\pi}{3}(8 - 3\sqrt{3}).
\]

10. Let \(f(x, y, z) = xyze^{xy} \).

(a) Compute the gradient vector field \(\mathbf{F} = \nabla f \).

Solution. Using the definition of the gradient, one gets
\[
\mathbf{F}(x, y, z) = e^{xy}[(yz + xy^2)z \mathbf{i} + (xz + x^2yz) \mathbf{j} + xy \mathbf{k}].
\]

(b) Let \(C \) be the curve obtained by intersecting the sphere \(x^2 + y^2 + z^2 = 1 \) with the plane \(x = 1/2 \) and let \(S \) be the portion of the sphere with \(x \geq 1/2 \). Draw a figure including possible orientations for \(C \) and \(S \); state Stokes’ theorem for this region.

Solution. The student should draw a figure at this point. One has to choose an orientation for the surface and the curve. For example, if the normal points toward the positive \(x \) axis, then the curve should be marked with an arrowhead indicating a counterclockwise orientation when the curve is viewed from the positive \(x \)-axis. Stokes’ theorem for this region states that for a smooth vector field \(\mathbf{K} \):
\[
\int_{C} \mathbf{K} \cdot d\mathbf{s} = \iint_{S} (\nabla \times \mathbf{K}) \cdot d\mathbf{S}.
\]
(c) With F as in (a) and S as in (b), let $G = F + (z - y)i + yk$, and evaluate the surface integral

$$\int_S (\nabla \times G) \cdot dS.$$

Solution. We can write $G = F + H$, where

$$H = (z - y, 0, y).$$

Thus, we can evaluate the given integral as follows:

$$\int_S (\nabla \times G) \cdot dS = \int_S (\nabla \times F + \nabla \times H) \cdot dS = \int_S \nabla \times F \cdot dS + \int_S \nabla \times H \cdot dS.$$

Because F is a gradient, $\nabla \times F = 0$, and so

$$\int_S \nabla \times G \cdot dS = \int_S \nabla \times F \cdot dS + \int_S \nabla \times H \cdot dS = \int_C H \cdot ds$$

by Stokes’ theorem. To evaluate the line integral, we shall parameterize C; we do this by letting

$$y = \frac{\sqrt{3}}{2} \cos t \quad x = \frac{1}{2} \quad \text{and} \quad z = \frac{\sqrt{3}}{2} \sin t$$

for $t \in [0, 2\pi]$. Thus, the line integral of H is

$$\int_C H \cdot ds = \int_0^{2\pi} H(c(t)) \cdot c'(t) dt$$

$$= \frac{3}{4} \int_0^{2\pi} (\sin t - \cos t, 0, \cos t) \cdot (0, -\sin t, \cos t) dt$$

$$= \frac{3}{4} \int_0^{2\pi} \cos^2 t \ dt.$$

Remembering that the average of $\cos^2 \theta$ over the interval from 0 to 2π is $1/2$, we get $3\pi/4$. Thus, the required line integral of $\nabla \times G$ is $3\pi/4$. ♦

The End