Hyperboloids of one sheet

1. Let h, k and ℓ be real numbers. The equation of an hyperbola of one sheet with center (h, k, ℓ) is a formula which has $\frac{(x - h)^2}{a^2}$, $\frac{(y - k)^2}{b^2}$, $\frac{(z - k)^2}{c^2}$, an $= 1$, and two additions and one subtraction.

2. To remember that we have a hyperboloid of one sheet, remember that the formula for a hyperboloid of one sheet has the equation of an ellipse stuck inside of it. For example, \[\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} + \frac{(z - k)^2}{c^2} = 1 \] is a formula for a hyperboloid of one sheet and if we set $k = 0$, we obtain \[\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1 \] which is the equation of an ellipse.

3. To remember that we have a hyperboloid of one sheet, remember that the formula for a hyperboloid of one sheet has the equation of an ellipse stuck inside of it. For example, \[\frac{(x - 1)^2}{100} + \frac{(y - 2)^2}{400} - \frac{(z - 3)^2}{900} = 1 \] is a formula for a hyperboloid of one sheet and if we set $z = 3$, we obtain \[\frac{(x - 1)^2}{100} + \frac{(y - 2)^2}{400} = 1 \] which is the equation of an ellipse.

4. Inequalities for \[\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} - \frac{(z - \ell)^2}{c^2} = 1: \]

 FIX THIS

 (a) If $d + e - f = 1$ and f is either positive or zero, then $d + e$ is FILL IN than or equal to 1.

 (b) Note that $\frac{(z - \ell)^2}{c^2}$ is either FILL IN or zero. If $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$, then

 i. $\frac{x^2}{a^2}$ is FILL IN than 1

 ii. x^2 is FILL IN than or equal to FILL IN.

 iii. ℓ is FILL IN than or equal to x or x is FILL IN than or equal to FILL IN

5. Let’s talk about how to draw the hyperboloid $\frac{x^2}{9} + \frac{y^2}{16} - \frac{z^2}{25} = 1$.