U–Pb zircon geochronology and tectonostratigraphy of southern Liverpool Land, East Greenland: Implications for deformation in the overriding plates of continental collisions

Scott M. Johnston a,⁎, Ebbe H. Hartz b,c, Hannes K. Brueckner d,e, George E. Gehrels f

⁎ Corresponding author. Tel.: +1 805 756 1650.
E-mail address: scjohnst@calpoly.edu (S.M. Johnston).

1. Introduction

Deformation in the overriding plates of continental collisions is characterized by complex feedback mechanisms between contraction and extension that have regional implications for collisional dynamics and long-term lithospheric structure and composition (e.g., Molnar and Tapponnier, 1975). To a large degree, the balance between contraction and extension is controlled by processes affecting the strength and style of deformation in the mid–lower crust including foundering of lithospheric roots, lower crustal flow, and continental underthrusting by the lower plate (e.g., Barazangi and Ni, 1982; England and Houseman, 1989; Bird, 1991). In addition to the specific predictions that each of these processes makes for the thermomechanical evolution of orogenic belts, the discovery of continental crust ~90 km thick beneath Tibet (Wittlinger et al., 2004) and ultrahigh-pressure rocks exhumed in the overriding plate of the Caledonian orogen (Giotti and Krogh Ravna, 2002; Giotti and McClelland, 2007) highlight the relevance of deformation in the overriding plate with respect to the formation and exhumation of ultrahigh- and high-pressure terranes. The presence of high-pressure rocks in...
the overriding plates of continental collisions challenges accepted models for their formation and exhumation along subduction interfaces (e.g., Ernst et al., 2007), while thermomechanical (Gerya et al., 2008; Warren et al., 2008) and petrological (Hacker et al., 2005) models that suggest continental underplating and exhumation in the overriding plate have significant implications for the nature of crust–mantle interactions and the composition of continental crust. Despite this growing body of literature, crucial petrologic and structural relationships from the lower crust remain buried in recent and active orogens, and models for the deep burial and subsequent exhumation of continental crust in the overriding plate need to be supplemented by observations from ancient analogues that expose deeper crustal sections of orogens.

In this paper, we investigate mid–lower crustal tectonostratigraphic relationships from East Greenland that formed in the overriding plate of the Caledonian orogen. The Caledonides formed as Baltica and Laurentia collided with each other during closure of the Iapetus Ocean, and culminated with the subduction of Baltica beneath the Laurentian margin (Gee, 1975; Roberts, 2003). The Scandinavian Caledonides are marked by eastward thrusting and sequential stacking of allochthonous and para-autochthonous nappes onto the Baltic margin during the Silurian (Brueckner and van Roermund, 2004), and terminated with the subduction of Baltic crust and its assembled outboard nappes to mantle depths by 415–400 Ma (Carswell et al., 2003; Root et al., 2004) and subsequent rapid exhumation through muscovite closure by 400–380 Ma (Walsh et al., 2007). Across the Atlantic, the Greenland Caledonides consist of rocks of Laurentian affinity that were situated in the overriding plate of the Caledonian orogen (Haller, 1971; Henriksen, 1985). Mid–lower crustal rocks currently exposed within the Greenland Caledonides indicate early crustal thickening, widespread anatexis and at least two pulses of late- to postorogenic extension (Jones and Strachan, 2000; Hartz et al., 2001; White and Hodges, 2002; McClelland and Gilotti, 2003; Gilotti and McClelland, 2008), and represent an ancient analogue to the overriding plate of the active Himalaya–Tibet orogen. Using U–Pb zircon geochronology on gneisses from southern Liverpool Land, East Greenland, we explore first-order questions including the continental affinity, provenance and timing of metamorphism in the hinterland of the southern Greenland Caledonides. Our results define the tectonostratigraphy of southern Liverpool Land, and suggest 1) at least partial underplating of the Laurentian overriding plate by subducted continental crust of Baltic affinity during Caledonian orogenesis, (Augsland, 2007), and 2) subsequent, multistage exhumation of deeply-buried rocks via two distinct structures related to tectonic underplating and crustal exhumation, respectively.

2. Regional geology: the Greenland Caledonides

The Greenland Caledonides can be split into northern and southern sections based on structural and metamorphic patterns (Gilotti et al., 2008). North of 76°N, the orogen consists of several westward-propagating thrust sheets that grade from unmetamorphosed sedimentary rocks and greenschist-facies rocks in the structurally lowest thrust sheets in the west, through amphibolite, and ultimately eclogite-facies rocks preserved in the structurally highest thrust sheets in the east (Hartz et al., 2000; Gilotti et al., 2008). Structurally highest, the North-East Greenland eclogite province is characterized by eclogite–facies metamorphism at ~400 Ma (Gilotti et al., 2004), and in its easternmost exposures, UHP metamorphism at ~360 Ma (McClelland et al., 2006), and was at least partly exhumed through ductal transpression and amphibolite-facies strike–slip shear zones active throughout the Devonian and Early Carboniferous (Sartini-Rideout et al., 2006). South of 76°N, the thrust architecture of the northern Greenland Caledonides is complicated by a variety of syn–postorogenic normal faults (Fig. 1). Despite this extensional dissection, four tectonostratigraphic units can be identified in the southern Greenland Caledonides. From the bottom up, these include the Foreland, the Niggli Spids Thrust Sheet (NSTS), the Hagar Bjerg Thrust Sheet (HBTS), and the Franz Joseph Allochthon (Hartz et al., 2001; Henriksen, 2003; Higgins et al., 2004). The structurally lowest Foreland is exposed in the far western regions of the orogen and in windows through structurally-higher thrust sheets in the cores of several anticlinal structures. The Foreland consists of Archean–Paleoproterozoic gneisses depositionally overlain by Paleoproterozoic–Ordovician sedimentary rocks (Higgins et al., 2001) that display low-greenschist-facies Caledonian metamorphic textures (Leslie and Higgins, 1999).

The Foreland is overthrust by the NSTS and the structurally-higher HBTS, both of which are composed of Archean–Paleoproterozoic crystalline basement orthogonally complexes overlain by the Mesoproterozoic Krummedal sequence paragneisses (Higgins et al., 2004). As an alternative to thrust sheet imbrication, it has also been proposed that these two units may represent duplication of the same basement–cover pair in a recumbent fold within a single thrust sheet (Haller, 1971; Andresen et al., 2007). Regardless of the nature of the NSTS–HBTS contact, significant differences in metamorphic and exhumation histories make their distinction useful for determining structural position within the regional tectonostratigraphy. First, based on the correlation of Payer Land basement with the NSTS (Higgins et al., 2004; Gilotti et al., 2008), peak metamorphic conditions recorded in mafic pods and anatectic paragneisses within the NSTS reached high-pressure granulite-facies metamorphic conditions (1.4–1.7 GPa at 800–850 °C, Elvevold et al., 2003; Gilotti and Elvevold, 2002), which contrast with generally lower-pressure granulite-facies metamorphic conditions in the HBTS (~1.0 GPa at 785–915 °C, Jones and Escher, 2002; Jones and Strachan, 2000; Kalsbeek et al., 2001; White and Hodges, 2003). Second, the NSTS underwent peak metamorphism at ~405 Ma (McClelland and Gilotti, 2003), whereas ages for peak metamorphism, migmatization, and granite emplacement in the HBTS range from 445 to 420 Ma (Strachan et al., 1995; Watt et al., 2000; Hartz et al., 2001; Kalsbeek et al., 2001).

The overlying Franz Joseph Allochthon consists of a thick succession of Neoproterozoic–Ordovician sedimentary rocks that increase in metamorphic grade from unmetamorphosed sedimentary rocks in the uppermost levels through regionally developed garnet–sillimanite-bearing pelites (Smith and Robertson, 1999) that are locally intruded by ~430 Ma granites above the contact with the HBTS (Kalsbeek et al., 2001; Andresen et al., 2007). The top of the East Greenland tectonostratigraphic section consists of Middle Devonian–Carboniferous fault-bounded sedimentary basins that locally rest unconformably on the Franz Joseph Allochthon and the underlying thrust sheets.

Emplacement of the southern East Greenland thrust sheets was accompanied by several generations of repeatedly reactivated synlate-oreogenetic extensional detachments (Hartz et al., 2000; Gilotti and McClelland, 2008). Early extension-related exhumation associated with normal-sense displacement between the HBTS and the Franz Joseph Allochthon is documented by a metamorphic discontinuity between the two units and by ~425 Ma U–Pb monazite ages from synkinematic leucosomes in the HBTS (White et al., 2002). These two units were subsequently juxtaposed while in the middle crust and exhumed together through muscovite closure to Ar by 423–414 Ma (White and Hodges, 2002). In contrast, high-P granulite-facies metamorphism at ~405 Ma (McClelland and Gilotti, 2003) in the NSTS, a muscovite cooling age of ~380 Ma (Hartz et al., 2000), and 69 K–Ar biotite ages of ~405 Ma from Suess Land (Rex and Higgins, 1985) indicate a second stage of extensional deformation associated with low-angle normal-sense detachments that exhumed the youngest and deepest sections of the orogen (White and Hodges, 2002). These detachment structures consistently display normal-sense displacement, although kinematic indicators variably exhibit both top-E, orogen-normal (Hartz and Andresen, 1995), and top-SW,
orogen-parallel displacement (Jones and Strachan, 2000; Gilotti and Elvevold, 2002). Farther east, the distinction in exhumation age between the HBTS and the NSTS may break down as several studies reveal migmatite-bearing units correlated with the HBTS that yield ages for muscovite closure through Ar<400 Ma (Dallmeyer et al., 1994; Bowman, 2008).

Liverpool Land, separated from the nearest high-grade Caledonian thrust sheets 100 km to the west by unmetamorphosed Devonian–Carboniferous sedimentary rocks (Fig. 1), consists of high-grade gneiss complexes and Caledonian calc-alkaline granites that are most completely exposed near the southern tip of the peninsula (Coe, 1975; Friderichsen and Surlyk, 1981; Cheeney, 1985; Bengaard and Watt, 1986). The Liverpool Land gneisses are tentatively correlated with the HBTS based on their association with Caledonian granites (Higgins et al., 2004). However, the identification of eclogites and garnet peridotites boudins within orthogneisses in southwest Liverpool Land (Krank, 1935; Smith and Cheeney, 1981; Hartz et al., 2005) suggests that at least some

Fig. 1. Regional geologic map of the southern Greenland Caledonides showing the location of the Liverpool Land study area with respect to the tectonostratigraphy of the inland fjords. Tectonostratigraphy after Higgins, et al. (2004), fault relationships after Gilotti and McClelland (2008). KFJ Fjord–Kejser Franz Joseph Fjord.

Fig. 2. A) Geologic map of Liverpool Land illustrating the regional geology and relative location of the Kalkdal paragneiss samples with respect to the gneiss complexes of southern Liverpool Land. B) Detailed geologic map of southern Liverpool Land illustrating petrologic and structural relationships, and sample locations from the Tværdal and Jættedal complexes. C) Cross section illustrating structural relationships in southern Liverpool Land. Maps modified from Friderichsen and Surlyk (1981) based on new mapping and geochronology from this study. JG–Jættedal Glacier; TG–Trefoden Glacier, N–Nissedal, * in the cross section indicates weakly developed top-S to top-SW shear fabrics below the Gubbedalens shear zone (this study, Augland, 2007).
of the rocks within the Liverpool Land area may be representative of either the NSTS (Gilotti et al., 2008) or a fragment of subducted continental crust with Baltican affinity (Augland, 2007). Importantly, the relative eastward location of the Liverpool Land gneisses provides a glimpse of the deepest levels of the hinterland of the Greenland Caledonides, and offers a new perspective on the evolution of the overriding plate of the Caledonian orogen.

3. Liverpool Land geology

The Liverpool Land tectonostratigraphy is divided into three distinct units based on field mapping of petrologic and structural observations, and on zircon geochronology (see below). From the bottom up, they are the Tvaerdal and Jættedal complexes in the footwall of the Gubbedalen shear zone (GSZ), and the Hurry Inlet granite in the hanging wall of the GSZ (Fig. 2).

3.1. Tectonostratigraphic unit descriptions

Structurally lowest, the Tvaerdal complex consists of orthogneisses along the southern coast of Liverpool Land that include abundant mafic, and rare ultramafic bodies to the west of Jættedal (Fig. 2). Host orthogneisses are characterized by a variety of granitic–granodioritic compositions with amphibolite-facies mineral assemblages, although pervasively developed migmatic textures (Fig. 3A) and widespread relict clinoxyroxene attest to earlier equilibration at high-T conditions. Kilometer- to m-scale mafic bodies west of Jættedal commonly display cm-scale monomineralic layering and compositional banding, while peak mineral assemblages in eclogite yield P–T estimates of \(N \sim 18.2 \text{kbar at } T \sim 800^\circ \text{C} \) (Hartz et al., 2005; Buchanan, 2008). Furthermore, variably-serpentinized, Cr-rich garnet peridotite lenses suggest tectonic emplacement and burial of the Tvaerdal complex to mantle depths (Smith and Cheeney, 1981). Two generations of post-peak melts within the Tvaerdal complex yield U–Pb zircon TIMS ages of 393–399 Ma (Hartz et al., 2005; Augland, 2007), while peak mineral assemblages in eclogite yield P–T estimates of \(> 18.2 \text{kbar at } T \sim 800^\circ \text{C} \) (Hartz et al., 2005; Buchanan, 2008).

Fig. 3. Field photos from southern Liverpool Land. A) A migmatic orthogneiss common throughout the Tvaerdal complex suggesting syn-deformational melting. B) A typical paragneiss outcrop within the Jættedal complex illustrating garnet + kyanite + biotite + plagioclase gneiss (representative of sample 6-2.1) interlayered with concordant leucocratic melts (representative of sample 5-32); inset displays a close-up view of the paragneiss. C) Looking along strike of the Gubbedalen shear zone eastward down the axis of Nissedal and across Jættedal where the shear zone can be seen high on the valley walls above the Jættedal Glacier. The approximate location of the uppermost detachment surface is marked with a dashed line, and the location of the Tvaerdal–Jættedal contact imaged in Fig. 3D is indicated with the dotted line. The inset image displays a ductilely deformed feldspar porphyroclast from the Tvaerdal complex within the shear zone demonstrating amphibolite-facies, top-N (030) slip; the arrow is ~2 cm in length. D) The contact between the Tvaerdal complex orthogneisses (structurally low, lighter rocks) and Jættedal complex biotite+garnet+kyanite gneisses (structurally high, darker rocks) on the northern wall of Nissedal and ~200 m below the Gubbedalen shear zone detachment surface. The nearly vertical granitic dikes that cut foliation in the Jættedal rocks (indicated with arrow) are similar to sample 6-24.
boudins in the Tværdal complex east of Jættedal contain only amphibolite-facies mineral assemblages.

The Jættedal complex structurally overlies the Tværdal complex, and consists of pelitic schists, gneisses and calc-silicates interlayered with granodioritic–dioritic orthogneisses. Pelitic assemblages within the Jættedal complex include garnet + kyanite + biotite + plagioclase + rutile + quartz ± K-feldspar (no muscovite) that suggest amphibolite-facies metamorphic conditions. Both paragneiss and orthogneiss compositional layers are characterized by migmatitic textures that range from nebulitic migmatites that feed concordant granitic dikes in pelitic rocks (Fig. 3B) to stromatic migmatites. The Jættedal complex is also cut by discordant syn-post kinematic granitic dikes and veins similar to the late-stage granitic dikes within the Tværdal complex (Fig. 3D).

Structurally above the Tværdal and Jættedal complexes, the hangingwall of the GSZ is composed of the Hurry Inlet granite and associated supracrustal rocks (Coe, 1975). The Hurry Inlet granite consists of a collection of high-K granites and granodiorites that plot along a calc-alkaline trend (Coe, 1975) and were intruded in several pulses from 445 to 423 Ma (Hartz et al., 2005; Augland, 2007). In contrast to exposures in the Tværdal and Jættedal complexes, the Hurry Inlet granites are generally undeformed and lack well-developed foliations other than local magmatic structures. This intrusive complex is also characterized by rare screens and enclaves that have been incorporated into the batholith from the country rock (Coe, 1975). The largest of these screens strikes E–W across Liverpool Land and is composed of foliated carbonates, pelitic schists and garnet + K-feldspar + plagioclase + quartz ± kyanite/ sillimanite ± muscovite gneiss.

3.2. Tectonostratigraphic contact relationships

Generally N–S-striking foliations and weakly developed N–S trending lineations observed in both the Tværdal and Jættedal complexes are progressively transposed into the shallowly N-dipping GSZ (Cheeney, 1985, Figs. 2, 3C). North of Tværdal and in Nissedal, fabrics associated with the GSZ increase from discontinuous outcrop-scale shear zones at lower structural levels to complete transposition of earlier foliation and layering in the several hundred meters below the detachment surface. Within the uppermost 100–200 m of the GSZ, N-trending stretching lineations and asymmetric shear-sense indicators including sigma clasts, S–C fabrics, asymmetric boudinage, and C shear bands indicating top-N displacement are pervasively developed. Ductile displacement along the GSZ was initiated at amphibolite-facies temperatures, as indicated by ductile deformation in feldspar (Fig. 3C), whereas widespread growth of chlorite and late brittle fracture in feldspar indicate continued top-N displacement through greenschist-facies temperatures. The detachment surface itself is delineated by greenschist-facies ultramylonites and breccias associated with discontinuous carbonate lenses and stringers up to 20 m thick. In the vicinity of Tværdal, the top-N fabrics of the GSZ overprint a variety of older fabrics in the Tværdal complex including top-S (Augland, 2007), top-SW and symmetrical shear fabrics. Along strike to the east, the detachment surface and top-N shear fabrics of the GSZ can be mapped visually in high cliffs above the Jættedal Glacier and in outcrop above the Trefoden Glacier (Fig. 2), and top-N shear fabrics are displayed in isolated N-dipping shear zones up to a kilometer below the detachment in granitic dikes that cut foliation in the Jættedal complex.

The structurally lower contact between the Tværdal and Jættedal complexes is marked by a sharp change in rock type from Tværdal complex orthogneisses to Jættedal complex paragneisses, and is concordant to regional foliation (Fig. 3D). North of Tværdal, this contact is strongly overprinted by top-N fabrics of the GSZ. Farther east, the contact emerges into the footwall of the GSZ, wraps around a N-plunging syncline, and is exposed along the eastern wall of Jættedal. Here, amphibolite-facies stretching lineations and top-S/ sinistral shear fabrics are weakly developed and there is no evidence for brittle faulting or greenschist-facies deformation along the contact.

4. Liverpool Land zircon geochronology

U–Pb zircon geochronology was performed on eight gneisses and one syn-post kinematic granite using a New Wave Instruments 1319 nm ArF excimer laser coupled with a GV Instruments Isoprobe at the Arizona LaserChron Center (University of Arizona, Tucson, AZ) to better define the provenance and metamorphic history of the various Liverpool Land gneisses. Due to the fine size (diameter of 30–150 μm) and intricate chemical zoning observed in CL and in U/Th ratios in many of the analyzed zircons, the small-volume laser ablation multicollector ICP–MS technique of Johnston et al. (2009) was used to delineate core and rim ages for analyzed zircons. With a 10 μm beam set for 32 pulses at 4 Hz yielding a sample pits of ~12 μm in diameter by 3.2 μm deep, between two and 36 analyses on each grain were made using CL images to guide spot placement from rim to core chemical zones, respectively. Rim ages were calculated by pooling analyses with 206Pb/238U and 207Pb/235U ages >500 Ma from all analyzed grains within each sample, using the TuffZirc algorithm of Ludwig (2003) to trim statistical outliers resulting from either Pb loss or inheritance, and calculate statistically robust 206Pb/238U ages. Upper-intercept ages are model 1 solutions to the concordia intercept algorithm of Ludwig (2003) with an anchor at the previously defined rim age, and calculated from analyses with 206Pb/238U ages >500 Ma from individual grains in detrital samples, or from analyses older than 500 Ma from all grains in samples with magmatic protoliths. Analyses that plot off well-defined mixing lines were assumed to be either bad analyses or contaminated with common Pb, and were visually trimmed. To increase counting statistics in detrital samples, after fully mapping cores and rims in 10 grains, additional grains were characterized with single rim and core analysis, and yield poorly constrained upper-intercept ages that are noted separately in detrital age histograms. Upper-intercept and rim age errors are reported at the 95% confidence level (1.96σ) and include analytical errors added in quadrature to systematic errors associated with uncertainty on the U decay constants, the age of the external standard, and the average uncertainty on the analysis session fractionation correction. 96 analyses of secondary standard R33 (419.3 Ma, Black et al., 2004) run throughout the analysis sessions yield a 206Pb/238U weighted average age of 418.4 ± 6.6 Ma, and provide a quantitative estimate for the accuracy of the results. Representative CL images and spot analyses are displayed in Fig. 4; CL images and U–Th–Pb data from all grains and analyses are available in the data repository (Tables ES1–10, Figs. ES1–9).

4.1. Tværdal complex

Three gneiss samples from the Tværdal complex were analyzed: samples 5-7 and 6-38 from west of Tværdal and 6-16 from east of Jættedal (Fig. 5). Sample 5-7 is a felsic gneiss adjacent to an eclogite boudin with a foliation defined by K-feldspar + plagioclase + quartz + amphibole and relict garnet and clinopyroxene. Separated zircons are prismatic to rounded, 75 μm in diameter, and in CL, they display homogeneously dark rims and oscillatory zoning in bright, poorly preserved cores. Rims are characterized by an average U/Th ratio of 7.0 Ma. Zircon cores are strongly discordant and analyses from six grains with U/Th ratios < 5 suggest older core populations with upper intercepts that range from ~1800–1000 Ma.

Sample 6-38 is a stromatic migmatite gneiss (Fig. 3A) found throughout the Tværdal complex, and consists of plagioclase + K-feldspar + quartz + biotite ± amphibole ± garnet melanosomes and plagioclase + K-feldspar + quartz leucosomes. Zircons separated...
from the bulk rock are prisms up to 200 μm in length that display dark oscillatory zoning in cores, and bright rims typically <5 μm thick in CL. Despite the fine rim morphology, five rim analyses with an average U/Th ratio of 13.5 from two grains yielded concordant results within 2σ. Although the TuffZirc algorithm requires more than 6 ages, a 206Pb/238U weighted average age of 403.4 ± 7.3 Ma was calculated from these analyses. 58 analyses from 15 grains with an average U/Th ratio of 5.3 fall on a single mixing line that defines an upper-intercept age of 1674 ± 28 Ma.

Sample 6-16 is an amphibole-bearing granodioritic gneiss that is the dominant rock type within the Tvaerdal complex east of Jættedal. Separated zircons are prismatic crystals up to 150 μm in length, and in CL, display bright, oscillatory zoning in cores and dark, homogenous rims up to 20 μm thick that are best developed on prism tips. Zircon rims indicate an average U/Th ratio of 316, and 48 of 69 analyses accepted by TuffZirc indicate a 206Pb/238U age of 408.8 ± 5.7/−5.4 Ma. 76 analyses from zircon mantles and cores in 11 grains fall on a single mixing line indicating an upper-intercept age of 1665 ± 22 Ma, and nearly concordant analyses from zircon cores indicate U/Th ratios of 1–2.

4.2. Jættedal complex

Zircons from two paragneisses, one concordant leucocratic melt, and one discordant cross-cutting granitic dike were analyzed from the Jættedal complex (Figs. 6, 8, Table 1). Sample 6-2.1 is a kyanite + garnet + biotite + plagioclase + quartz gneiss with nebulous migmatitic textures (Fig. 3B). Separated zircons are rounded, vitreous beads 30–80 μm in diameter, and CL imaging reveals homogenously bright rims up to 20 μm thick with a variety of bright–dark relict cores displaying oscillatory zoning. Zircon rims yield an average U/Th ratio of 31 and a TuffZirc 206Pb/238U age of 434.7 ± 10.3/−6.2 Ma was calculated from 36 of 57 rim analyses. Detrital cores typically have U/Th ratios <10; 11 of 15 analyzed grains indicate Archean upper-intercept ages while the remaining 4 grains have Mesoproterozoic upper-intercepts that range from 1145 to 1651 Ma.

Sample 5-32 is a foliated leucocratic melt interlayered with sample 6-2.1 that is composed of K-feldspar + plagioclase + quartz and relict garnet that increases in abundance toward the melt layer margins (Fig. 3B). Rounded to prismatic zircons from 30 to 100 μm in length and are characterized by CL images that reveal rare relict cores <30 μm in diameter overgrown by dark mantles and medium-bright rims exhibiting homogenous to sector chemical zoning. 57 of 78 analyses from dark mantles and brighter rims with U/Th ratios typically <10 yield a TuffZirc 206Pb/238U age of 438.0 ± 10.5/−9.6 Ma. Due to the relict nature of the cores, only two Archean and two Mesoproterozoic (~1300 and ~1000 Ma) upper-intercept ages, all with U/Th ratios also <10, were recovered from 20 analyzed grains.

Sample 6-14 is a banded gneiss with plagioclase-rich bands alternating with garnet + plagioclase + kyanite/sillimanite + quartz + biotite + muscovite layers. Prismatic zircon crystals up to 90 μm in length display 20–30 μm thick rims exhibiting oscillatory zoning overgrowing oscillatory zoned cores in CL. 33 of 62 analyses accepted by TuffZirc from zircon rims indicate a 206Pb/238U age of 437.9 ± 8.6/−7.9 Ma with an average U/Th ratio of 38. 13 upper-intercept ages indicate exclusively Meso–Paleoproterozoic zircon inheritance of low U/Th cores with ages ranging from 920 to 2170 Ma and peaks at ~1300 and 1700–1800 Ma.

Sample 6-24 is from a variably deformed, 10 m thick, syn-post kinematic granitic dike that cuts regional foliation associated with the previous Jættedal complex samples (Fig. 3D). The analyzed sample was collected from a discontinuous, E–W striking mylonitic shear zone that cuts the dike with top-N fabrics defined by N-trending stretching lineations, S–C fabrics, and oblique subgrain foliation in quartz ribbons. Separated zircons are prismatic crystals 100–200 μm in length and exhibit oscillatory zoning with dark outermost rims in

Fig. 4. Representative CL images illustrating core-to-rim chemical zoning and corresponding spot ages for zircons from (A) the Tvaerdal complex, (B) the Jættedal complex, and (C) the paragneiss screens of the Hurry Inlet granite batholith. Spot ages reported in this figure are 206Pb/238U ages for analyses younger than 1000 Ma and are 206Pb/207Pb ages for analyses older than 1000 Ma. Images were acquired using the Cameca CAMSCAN Series II SEM at the University of Arizona.
due to either inheritance or Pb loss. Error ellipses are shown at 1σ. Instrument scheduling prohibited this sample from being analyzed using the small-volume technique, although the relatively larger size of chemical domains in this sample allowed successful characterization using a larger laser spot size of 25 μm and following the procedure of Gehrels et al. (2008). 13 of 17 analyses from rims with U/Th ratios ranging from 1.4 to 53.9 yield a TuffZirc 206Pb/238U age of 393.5 ± 13.0/−8.4 Ma. Core analyses, typically with U/Th ratios <10, suggest inheritance of Mesoproterozoic zircons with peaks at ~1000, 1400, and 1600–1700 Ma.

4.3. Hurry Inlet granite

Zircons from two paragneisses within a screen near Kalkdal were analyzed from the Hurry Inlet granite (Figs. 7, 8, Table 1). Sample 6-31 is a retrogressed garnet + sillimanite + quartz + plagioclase ± muscovite gneiss found within a series of interlayered gneisses with various pelitic–psammatic compositions. Separated zircons are rounded to prismatic crystals 30–60 μm in diameter, and in CL, display a variety of core morphologies with dark rims <20 μm thick. Due to high U concentrations and resultant high Pb concentrations in zircon rims, many of the analyses in this sample were executed using a laser pulse rate of 2 Hz (rather than the standard 4 Hz) in order to avoid tripping the Channeltron detectors measuring Pb isotopes. Despite this difficulty, analyses of R33 at 2 and 4 Hz during the analysis session yield statistically equivalent 206Pb/238U weighted average ages of 408.9 ± 10.0 and 413.9 ± 8.5 Ma, respectively, and indicate that changing the laser hit rate did not affect the precision or accuracy of the technique beyond 1–2%. Zircon rims from sample 6-31 have an average U/Th ratio of 116, and 14 of 22 analyses accepted by TuffZirc indicate a 206Pb/238U age of 431.7 ± 11.4/−8.0 Ma. Zircon cores typically have U/Th ratios <5, and 25 upper-intercept ages indicate predominantly Proterozoic zircon inheritance with ages ranging from 1950 to 1000 Ma.

Sample 6-33 is a garnet-bearing granitic gneiss with minor biotite, muscovite and kyanite that is the dominant rock type exposed in the Kalkdal screen. Separated zircons are rounded to prismatic grains up to 60 μm in length, and in CL, display prismatic cores with oscillatory zoning overgrown by homogenously dark rims up to 20 μm thick that are best developed parallel to the long axis of prism cores. Rims yield an average U/Th ratio of 30 and a TuffZirc 206Pb/238U age of 417.5 ± 9.1/−8.0 Ma. Inherited cores have U/Th ratios that are typically <10, and upper-intercept ages are predominantly Proterozoic with 13 grains ranging from 950 to 1950 and probability peaks at 1100 and 1600 Ma. One grain exhibits two distinct mixing lines that indicate a ~2400 Ma core and a ~1150 Ma mantle.

5. Discussion

5.1. The Liverpool Land tectonostratigraphy and regional correlations

The new mapping and U–Pb zircon data can be used to define the Liverpool Land tectonostratigraphy, and to place these rocks in the orogenic framework of the Laurentian–Baltican Caledonides. In the following discussion, upper-intercept ages are interpreted to indicate ages inherited from either detrital or primary magmatic cores, while ages from zircon rims, typically with high U/Th values—commonly associated with metamorphic zircons (e.g., Rubatto, 2002)—are interpreted to represent the timing of Caledonian metamorphism.

The Jøddetdal complex paragneisses and the screens of the Hurry Inlet granite are dominated by primarily late Paleo–Mesoproterozoic detrital zircon populations, and the youngest grains indicate maximum depositional ages of 920 ± 150 Ma and 950 ± 90 Ma, respectively (Table 1). These detrital signatures suggest direct correlation to either the Krummedal sequence or the Eleonore Bay Supergroup found in the inland fjords farther to the west (Fig. 8, Strachan et al., 1995; Kalsbeek et al., 2000; Watt et al., 2000; Leslie and Nutman, 2003). The Krummedal and Eleonore Bay Supergroups are part of a series of Neoproterozoic basins found in the north Atlantic that are dominated by late Paleo–Mesoproterozoic detritus thought to have
been derived from a Laurentia–Baltica source terrane (Cawood et al., 2007, and references therein), and deposited prior to, and during the opening of the Iapetus in a series of Rodinian intracontinental basins (Cawood et al., 2007), or on the Rodinian margin (Kirkland et al., 2007). While significant volumes of 1400–1100 Ma detritus—ages that are absent in Baltican source terranes—links these basins to Laurentia, the conspicuous absence of Archean detrital ages may indicate that the East Greenland sedimentary successions are allochthonous terranes emplaced on older Archean–Paleoproterozoic basement during subsequent deformation (Watt and Thrane, 2001). However, the relative lack of Archean grains may also be explained by minimal erosion of Archean terranes in the continental interior during deposition while Grenvillian uplift lead to widespread erosion of Mesoproterozoic source terranes along the southern margin of Rodinia (Cawood et al., 2007; Kirkland et al., 2007). This later hypothesis is supported by voluminous Archean detritus in Jættedal complex sample 6-2.1 that indicates Archean source terranes for at least some of the East Greenland sedimentary rocks. Archean detritus in the East Greenland Neoproterozoic basins could be related to variable provenance associated with subtle changes in sedimentary facies, or may indicate that the East Greenland basins are a series of successor basins comparable to the age-equivalent Torridonian succession of NW Scotland that includes older pre-Grenvillian sedimentary rocks that are dominated by Archean detritus and unconformably overlain by younger post-Grenvillian basins that display dominantly late Paleo–Mesoproterozoic provenance (Kinnaird et al., 2007).

The Jættedal paragneisses and screens of the Hurry Inlet granite also display similar ages for Caledonian metamorphism of 438–435 Ma and 432–417 Ma, respectively. Although Gilotti and McClelland (2005) showed that zircon ages in the Greenland Caledonides are susceptible to inheritance, the number of analyses involved in the calculations, concordia patterns, and the tight cluster of ages, particularly within the Jættedal complex, suggest that these ages represent the true timing of peak metamorphism. Furthermore, these metamorphic ages generally overlap with the emplacement of the Hurry Inlet granite from 445 to 423 Ma (Hansen and Steiger, 1971; Coe, 1975; Hartz et al., 2005; Augland, 2007), and with the 445–420 Ma metamorphism, anatexis and plutonism in the Krummedal of the HBTS (Strachan et al., 1995; Watt et al., 2000; Hartz et al., 2001; Kalsbeek et al., 2001; White et al., 2002) and low-pressure metamorphism and plutonism in the lowermost levels of the Eleonore Bay Supergroup in the Franz Joseph Allochthon (Kalsbeek et al., 2001; Andresen et al., 2007). In the inland fjords, the amphibolite–granulite-facies Krummedal and the low-grade Eleonore Bay Supergroup can be distinguished by metamorphic
grade and ~940–910 Ma plutonism that is widespread throughout the Krummedal and absent from the younger sedimentary rocks of the Eleonore Bay Supergroup (e.g., Higgins et al., 2004). In Liverpool Land, no evidence of late-Grenvillian plutonism has been documented, and thus, the interpretation that the Jættedal paragneisses and the screens of the Hurry Inlet granite may represent high-grade equivalents to the sedimentary rocks of the Eleonore Bay Supergroup and the Franz Joseph Allochthon cannot be ruled out. However, we correlate both the Jættedal paragneisses and the screens of the Hurry Inlet granite with the Krummedal sequence of the HBTS based on metamorphic grade, coincidence with early Caledonian metamorphism and plutonism, and the lack of associated low-grade Neoproterozoic sedimentary rocks. Regardless of this correlation, ~440–420 Ma anatexis in the Liverpool Land paragneisses links these rocks to the Laurentian overriding plate of the Caledonides as the Norwegian basement and allochthons of Baltican affinity are generally not characterized by high-grade deformation during this time interval (e.g., Brueckner and van Roermund, 2004).

Although the Jættedal paragneisses and the screens of the Hurry Inlet granite are both tentatively correlated with the Krummedal sequence, geologic mapping indicates that these two units are separated by the GSZ and occupy different tectonostratigraphic levels throughout the area, indicate that the Jættedal complex represents a fragment of Baltican crust injected into the Laurentian overriding plate during Caledonian deformation (Smith and Austrheim, 1990; Skår, 2000; Austrheim et al., 2003), and may be the result of inheritance or Pb loss. Error ellipses are shown at 1σ.

Fig. 7. U–Pb data from the paragneiss screens of the Hurry Inlet granite; inset plots show details of Caledonian analyses used to Caledonian rim ages. Upper-intercept and Caledonian rim ages are reported at the 95% confidence level and calculated from analyses indicated by filled ellipses. Open ellipses were omitted by the Tufftrec algorithm of Ludwig (2003).

5.2. Implications for the dynamics of continental orogenesis

The correlation of the Tvaerdal complex with Baltica provides geochronologic evidence for a Laurentia–Baltica suture, and highlights underplating of the overriding plate by continental crust from the subducting plate as a significant process associated with continental orogenesis. Based on seismic, structural and analogue modeling studies of the Himalaya–Tibet orogen, regional-scale continental underplating has been proposed to occur as subducted continental
crust is underthrust beneath continental crust of the overriding plate following prior thinning or removal of the overriding plate mantle lithosphere (e.g., Owens and Zandt, 1997; DeCelles et al., 2002), or beneath the overriding plate mantle lithosphere followed by subsequent foundering of the overriding plate mantle lithosphere and replacement by the underplated continental crust (e.g., Chemenda et al., 2000). Both of these models are associated with regional uplift of overriding plate continental plateaux. Alternatively, continental underplating has also been suggested at more local scales with less of an influence on the regional evolution of the overriding plate. Local-scale underplating may be associated with isolated diapirs that rise from the downgoing slab through the mantle wedge (Yin et al., 2007), or limited underthrusting of neutrally buoyant continental crust subducted beneath the overriding plate as it spreads laterally at the Moho following exhumation from mantle depths (Walsh and Hacker, 2004). The apparently small areal extent of the Tværdal complex suggests that local-scale models for continental underplating are more applicable to the Greenland Caledonides, although additional regional geochronologic, isotopic and correlation studies are necessary to rigorously define the extent of the Tværdal complex and test this hypothesis.

Regardless of continental affinity, the metamorphic history of the Tværdal complex and its juxtaposition with the Jættedal complex across the Ittoqqortoormiit shear zone challenges traditional models for the exhumation of high-pressure terranes. Most high-pressure continental terranes are thought to have been exhumed from mantle depths to upper-crustal levels within the subduction channel and in the footwall position with respect to lithospheric-scale normal faults that act in concert with pure shear flattening and/or basal thrust fault imbrication (e.g., Ernst et al., 2007). In Liverpool Land, the Ittoqqortoormiit shear zone was responsible for juxtaposing the ~440 Ma eclogite-facies terranes are thought to have been exhumed from mantle depths to upper-crustal levels within the subduction channel and in the footwall position with respect to lithospheric-scale normal faults that act in concert with pure shear flattening and/or basal thrust fault imbrication (e.g., Ernst et al., 2007). In Liverpool Land, the Ittoqqortoormiit shear zone was responsible for juxtaposing the ~440 Ma eclogite-facies

![Fig. 8. Histograms illustrating the ages of detrital cores from the Hurry Inlet granite and the Jættedal complex. Solid black boxes indicate ages calculated with Caledonian lower-intercept anchor and multiple discordant core analyses, while grey boxes indicate ages calculated with Caledonian lower-intercept anchor and single discordant core analysis. Probability density function of detrital ages from the Eleonore Bay Supergroup (Watt et al., 2000) and the Krummedal sequence (Strachan et al., 1995; Watt et al., 2000; Leslie and Nutman, 2003) are shown for comparison.](image)

Table 1

Upper-intercept ages from Liverpool Land detrital samples.

<table>
<thead>
<tr>
<th>Grain</th>
<th>Age ±95% (Ma)a</th>
<th>Anal. usedb</th>
<th>MSWD</th>
<th>Grain</th>
<th>Age ±95% (Ma)a</th>
<th>Anal. usedb</th>
<th>MSWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paragneiss screens of the HIGB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-31</td>
<td>977 ± 180</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>1132 ± 50</td>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>1052 ± 40</td>
<td>4</td>
<td>0.3</td>
<td>5</td>
<td>1200 ± 52</td>
<td>7</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>1135 ± 51</td>
<td>3</td>
<td>0.1</td>
<td>8</td>
<td>1402 ± 83</td>
<td>5</td>
<td>2.6</td>
</tr>
<tr>
<td>30</td>
<td>1146 ± 71</td>
<td>1</td>
<td>0.0</td>
<td>9</td>
<td>1623 ± 60</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>1201 ± 36</td>
<td>4</td>
<td>0.2</td>
<td>11</td>
<td>2447 ± 62</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>1315 ± 42</td>
<td>2</td>
<td>0.3</td>
<td>10</td>
<td>2607 ± 39</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>29</td>
<td>1360 ± 51</td>
<td>1</td>
<td>0.0</td>
<td>2</td>
<td>2711 ± 69</td>
<td>4</td>
<td>1.9</td>
</tr>
<tr>
<td>15</td>
<td>1382 ± 68</td>
<td>1</td>
<td>0.0</td>
<td>15</td>
<td>2716 ± 67</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>1419 ± 59</td>
<td>1</td>
<td>0.0</td>
<td>3</td>
<td>2721 ± 69</td>
<td>11</td>
<td>13.0</td>
</tr>
<tr>
<td>7</td>
<td>1435 ± 150</td>
<td>3</td>
<td>2.1</td>
<td>4</td>
<td>2726 ± 50</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>1435 ± 35</td>
<td>2</td>
<td>0.0</td>
<td>6</td>
<td>2827 ± 44</td>
<td>9</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>1453 ± 35</td>
<td>2</td>
<td>0.0</td>
<td>6</td>
<td>2827 ± 44</td>
<td>9</td>
<td>4.7</td>
</tr>
<tr>
<td>14</td>
<td>1459 ± 150</td>
<td>3</td>
<td>4.7</td>
<td>19</td>
<td>2841 ± 81</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>1517 ± 29</td>
<td>3</td>
<td>0.4</td>
<td>7</td>
<td>2856 ± 42</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>1548 ± 83</td>
<td>1</td>
<td>0.0</td>
<td>12</td>
<td>2872 ± 42</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>1607 ± 43</td>
<td>4</td>
<td>0.7</td>
<td>14</td>
<td>2903 ± 55</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>1632 ± 80</td>
<td>1</td>
<td>0.0</td>
<td>5-32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1638 ± 53</td>
<td>2</td>
<td>0.1</td>
<td>8</td>
<td>1024 ± 270</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>24</td>
<td>1710 ± 45</td>
<td>2</td>
<td>0.2</td>
<td>4</td>
<td>1327 ± 70</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>1713 ± 100</td>
<td>3</td>
<td>2.1</td>
<td>2</td>
<td>2723 ± 34</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>1756 ± 53</td>
<td>5</td>
<td>2.1</td>
<td>1</td>
<td>2724 ± 30</td>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>1767 ± 50</td>
<td>1</td>
<td>0.0</td>
<td>6-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1784 ± 32</td>
<td>3</td>
<td>1.1</td>
<td>21</td>
<td>928 ± 150</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>1827 ± 48</td>
<td>1</td>
<td>0.0</td>
<td>15</td>
<td>1114 ± 110</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>1836 ± 84</td>
<td>1</td>
<td>0.0</td>
<td>13</td>
<td>1235 ± 130</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>1944 ± 59</td>
<td>1</td>
<td>0.0</td>
<td>11</td>
<td>1268 ± 110</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>6-33</td>
<td>1947 ± 25</td>
<td>5</td>
<td>0.2</td>
<td>5-32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>690 ± 90</td>
<td>2</td>
<td>0.1</td>
<td>7</td>
<td>1558 ± 52</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>1108 ± 45</td>
<td>4</td>
<td>0.6</td>
<td>1</td>
<td>1703 ± 45</td>
<td>3</td>
<td>1.3</td>
</tr>
<tr>
<td>9</td>
<td>1108 ± 110</td>
<td>5</td>
<td>2.2</td>
<td>20</td>
<td>1771 ± 64</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>1116 ± 46</td>
<td>6</td>
<td>1.8</td>
<td>8</td>
<td>1823 ± 53</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>7a</td>
<td>1153 ± 37</td>
<td>7</td>
<td>1.3</td>
<td>10</td>
<td>1824 ± 38</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>1156 ± 45</td>
<td>7</td>
<td>1.5</td>
<td>5</td>
<td>1824 ± 30</td>
<td>4</td>
<td>0.9</td>
</tr>
<tr>
<td>13</td>
<td>1322 ± 37</td>
<td>5</td>
<td>0.9</td>
<td>4</td>
<td>1858 ± 53</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>1389 ± 81</td>
<td>1</td>
<td>0.0</td>
<td>6</td>
<td>2212 ± 55</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>1623 ± 82</td>
<td>5</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1649 ± 48</td>
<td>3</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1679 ± 37</td>
<td>3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1680 ± 25</td>
<td>6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1785 ± 38</td>
<td>4</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1947 ± 25</td>
<td>5</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2388 ± 38</td>
<td>2</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Ages are upper-intercept model 1 ages calculated by isochron (Ludwig, 2003) with a Caledonian lower-intercept anchor.
b Indicates the number of analyses used in conjunction with the Caledonian anchor in the calculation of the upper-intercept age.
c Age derived from zircon mantle.
Acknowledgments

Fridersheim, P.D.A. and Suryl, F., 1981. 70 Ø.1 Nord, Hurry Inlet; 1:100, 000; 71°00–70°30′ W, 1:100, 000; 70’00′–70°30′ N, 23°39′–21′′18′′ W. Geological Survey of Denmark and Greenland. Geological Survey of Denmark and Greenland.

