Exhumation of ultrahigh-pressure rocks beneath the Hornelen segment of the Nordfjord-Sogn Detachment Zone, western Norway

Scott Johnston
Bradley R. Hacker
Department of Earth Science, University of California, Santa Barbara, CA 93106-9630, USA

Mihai N. Ducea
Department of Geosciences, University of Arizona, Gould-Simpson Building #77, 1040 E 4th St., Tucson, AZ 85721, USA

ABSTRACT

The Nordfjord-Sogn Detachment Zone of western Norway represents an archetype for crustal-scale normal faults that are typically cited as one of the primary mechanisms responsible for the exhumation of ultrahigh-pressure (UHP) terranes. In this paper, we investigate the role of normal-sense shear zones with respect to UHP exhumation using structural geology, thermobarometry, and geochronology of the Hornelen segment of the Nordfjord-Sogn Detachment Zone. The Hornelen segment of the zone is a 2–6 km thick, top-W shear zone, primarily developed within amphibolite-grade allochthonous rocks, that juxtaposes the UHP rocks of the Western Gneiss Complex in its footwall with lower-grade allochthons and Carboniferous-Devonian Basins in its hanging wall. New thermobarometry and Sm/Nd garnet geochronology show that these top-W fabrics were initiated at lower crustal depths of 30–40 km between 410 Ma and 400 Ma. Structural geology and quartz petrofabrics indicate that top-W shear was initially relatively evenly distributed across the shear zone, and then overprinted by discrete ductile-brittle detachment faults at lower strain rates during progressive deformation and exhumation. These results require a three-stage model for UHP exhumation in which normal-sense shear zones exhumed UHP rocks from the base of the crust along initially broad ductile shear zones that were progressively overprinted by discrete ductile-brittle structures.

Keywords: ultrahigh-pressure rocks, exhumation, Nordfjord-Sogn Detachment Zone, low-angle detachment, western Norway, Hornelen Region.

INTRODUCTION

Ultrahigh-pressure (UHP) terranes—which range from km-scale nappes to tens-of-thousands-of-square-kilometer provinces—experience rapid and near-isothermal decompression from metamorphic conditions within the coesite stability field (>~27 kbar) to the upper crust at plate-tectonic rates exceeding 10 mm/yr (e.g., Baldwin et al., 2004; Glodny et al., 2005; Root et al., 2005; Parrish et al., 2006). To explain these impressive exhumation rates, a variety of kinematic models have been employed that incorporate one or a combination of exhumation mechanisms that include: wedge extrusion (e.g., Chemenda et al., 2000), channel flow (e.g., Beaumont et al., 2001), subhorizontal coaxial thinning followed by non-coaxial removal of the upper crust (e.g., Dewey et al., 1993), and normal-sense reactivation of the suture zone (e.g., Hacker et al., 2003). While all of these models cite normal-sense shear zones along the upper contact of the exhuming UHP terrane, the amount of offset and the tectonic setting in which the normal-sense displacement occurred vary drastically in the different models. These differences in the style of normal-sense shearing have important geologic implications beyond the exhumation of UHP rocks, representing an essential step toward a better understanding of first-order plate-tectonic processes as far reaching as the kinematic evolution of continental collision and orogeny, the formation and composition of the lower continental crust, melt generation, the geometry and depositional patterns of syn-orogenic basins, and the forces driving plate motion.

We present a case study from western Norway that places important constraints on the style of normal-sense shearing associated with UHP exhumation. The size and excellent exposures of the Norwegian (U)HP (high-pressure/ultrahigh-pressure) provinces, a lack of post-orogenic deformation, and the preservation of original tectonostratigraphic contacts between the (U)HP provinces with structurally higher tectonostratigraphic units, provide a unique opportunity to reconstruct the history of an UHP orogen and characterize UHP exhumation. The Norwegian (U)HP provinces are thought to have been primarily exhumed by the Nordfjord-Sogn Detachment Zone, a major top-W shear zone that extends >100 km along orogenic strike (Milnes et al., 1997; Andersen, 1998; Labrousse et al., 2004). This quantitative study focuses on the Hornelen segment of the Nordfjord-Sogn Detachment Zone to address a specific set of questions designed to characterize deformation related to normal-sense displacement above UHP terranes: (1) using structural geology and electron back-scatter diffraction on quartzites, we determine how strain was partitioned within the shear zone and across tectonostratigraphic contacts; (2) using thermobarometry, we quantify the depth from which different tectonostratigraphic units were exhumed and the depth at which normal-sense shear initiated; and (3) using Sm/Nd garnet geochronology, we constrain the timing of normal-sense displacement with respect to (U)HP metamorphism. Ultimately, our results are used to investigate models for (U)HP exhumation and quantify the component of UHP exhumation accomplished through normal-sense shear.

GEOLOGIC SETTING

The Scandinavian Caledonides formed through a series of orogenic events associated with the closure of the Iapetus Ocean during the Ordovician-Devonian, and culminated with the emplacement of the Caledonian nappe stack and the formation of the Norwegian UHP provinces as Baltica and Laurentia collided (Roberts and...
The Caledonian nappe stack, best preserved in the foreland of eastern Norway and Sweden, consists of a series of tectonostratigraphic units (Fig. 1): fragments of Laurentia in the Uppermost Allochthon; ophiolitic mélanges, ocean-margin sediments, and outboard Baltica terranes in the Upper Allochthon; and imbricated basement-cover sequences representing distal regions of the Baltica margin in the Middle and Lower Allochthons (Gee et al., 1985; Roberts and Gee, 1985). These nappes were thrust southeastward >200 km over the Proterozoic granodioritic-granitic gneisses of the Western Gneiss Complex, correlative to the (par)-autochthonous Baltica basement, in a series of events that initiated as early as the Wenlockian (ca. 425 Ma, Andersen et al., 1990), and continued through 415–408 Ma in the Upper and Middle Allochthons (Fossen and Dunlap, 1998; Hacker and Gans, 2005). Peak metamorphic conditions in these basement gneisses range from upper-amphibolite facies in the east near the foreland (Walsh and Hacker, 2004), through UHP coesite-eclogite facies in the west (Smith, 1984; Wain, 1997). The felsic gneisses of the Western Gneiss Complex include outcrop- to km-scale eclogite boudins that record northwestward increasing P-T conditions (Krogh, 1977; Carswell and Cuthbert, 2003), suggesting subduction of Baltica beneath Laurentia up to UHP depths by 415–400 Ma (Krogh and Carswell, 1995; Carswell and Cuthbert, 2003; Root et al., 2004; Kylander-Clark et al., 2007). The Western Gneiss Complex is overlain by complexly infolded orthogneisses and paragneisses correlated with the structurally higher allochthons (Robinson, 1995). Eclogite boudins within these allochthons suggest that the allochthons were also involved in the Late-Caledonian UHP event (Terry et al., 2000; Root et al., 2005; Young, 2005).

Following continental subduction and UHP metamorphism, the Caledonides were reshaped by a major extensional event that rapidly exhumed rocks from lower crustal and mantle depths into the upper crust. In the foreland, this extension was accommodated through top-W reactivation of older top-SE contractual detachments, and the nappe stack was exhumed through muscovite closure to Ar by ca. 400 Ma (Fossen and Dunlap, 1998). In the hinterland, muscovite cooling ages become progressively younger westward and down section from 400 Ma at higher structural levels in the east to 380 Ma in the westernmost UHP provinces (Root et al., 2005; Walsh et al., 2007). Most of this exhumation is thought to have occurred through top-W, normal-sense displacement along a series of detachments that crop out along the west coast of Norway, combined with non-coaxial normal-sense shear and vertical thinning in the detachment footwalls (Andersen

Figure 1. Regional map of the Norwegian Caledonides showing the relative location of the Caledonian nappe stack, the Western Gneiss Complex, the Devonian basins, and the Nordfjord-Sogn Detachment Zone.
The Hornelen segment of the Nordfjord-Sogn Detachment Zone

HORNELEN REGION TECTONOSTRATIGRAPHY

The tectonostratigraphy of the Hornelen Region was described by Bryhni and Grimstad (1970) and mapped by Bryhni and Lutro (Bryhni, 2000; Bryhni and Lutro, 2000b, 2000a, 2000c; Lutro and Bryhni, 2000). From the bottom up, the Hornelen Region tectonostratigraphy includes the Western Gneiss Complex, the Svartekari Group, the Eikefjord and Lykkjebo Groups, and the Sunnarvik Group, which are loosely correlated with regional nappe stack tectonostratigraphy: Baltica basement, the Lower Allochthon, the Middle Allochthon, and the Upper Allochthon, respectively (Fig. 2). These rocks are in fault contact with, and unconformably overlain by, the Devonian-Carboniferous sediments of the Hornelen and Hasteinen Basins that define the top of the tectonostratigraphic section.

The Western Gneiss Complex is the lowermost tectonostratigraphic unit exposed within the Hornelen Region. In contrast to the wide variety of rock types found in the overlying units, the Western Gneiss Complex consists of relatively monolithic Precambrian orthogneisses that range from granite–granodiorite with local 1- to 2-cm K-feldspar augen, to relatively undeformed quartz monzonite with abundant 2- to 3-cm K-feldspar augen. In contrast to the amphibolite-facies conditions preserved within these felsic orthogneisses, outcrop- to km-scale mafic boudins preserve older eclogitic assemblages that, along Nordfjord, range from UHP in the west to HP in the east (e.g., Cuthbert et al., 2000; Young et al., 2007). The foliation within the host gneiss is cut by abundant, pegmatitic granitic to syenitic dikes. In the several hundred meters below the contact with the overlying allochthons, these dikes become increasingly deformed and transposed into the foliation, and symmetric fabrics are progressively replaced by asymmetric fabrics.

The Western Gneiss Complex is overlain by metamorphosed Precambrian plutonic and sedimentary rocks of the Svartekari Group. The lowermost unit within the Svartekari Group consists of <100 m of interlayered coarse muscovite schists, marbles, quartzites, and rare quartz-pebble conglomerates. This paragneiss sequence is overlain by up to 1000 m of muscovite-rich orthogneisses with abundant cross-cutting quartz diorite-granitic dikes and lenses, and local amphibolite bodies up to 200 m in length. These cross-cutting dikes are variably transposed into the foliation, many forming asymmetric boudins; top-W shear-sense indicators are pervasively developed throughout the Svartekari Group. The Svartekari Group orthogneisses are correlated with the Lower Allochthon, whereas the structurally lower Svartekari Group paragneisses may represent an overturned section of depositional cover to the orthogneisses, or alternatively, could be part of the cover sequences unconformably overlying the Baltica autochthon.

The Eikefjord Group orthogneisses and the Lykkjebo Group paragneisses, which overlie the Svartekari Group, are considered to be a basement-cover pair within the Middle Allochthon. The Eikefjord Group consists of (1) dark, alcalic, massive to banded, fine-grained, biotite-K-feldspar gneisses with common outcrop-to km-scale boudins of anorthosite, and rare garnet-amphibolite and garnet-anorthosite bodies; and (2) granitic augen gneisses and megacrystic augen gneisses variably altered to biotite-rich, albitte-porphyroblast schists. The Lykkjebo Group consists primarily of feldspathic quartzites with minor interlayers of muscovite schist, rare pebble conglomerates, and a distinctive, coarse, garnet-muscovite schist found along contacts with the Eikefjord Group. This garnet-muscovite schist in the Lykkjebo Group immediately below and above the Eikefjord Group suggests at least three structural repetitions of individual basement-cover units, and an inverted lower limb to the nappe. Subsequent to nappe emplacement, both the Eikefjord and Lykkjebo Groups were strongly affected by regional extension and carry a foliation characterized by pervasive top-W shear fabrics.

The Sunnarvik Group, correlated with the Solund-Stavsfjord ophiolite of the Upper Allochthon, structurally overlies the Eikefjord and Lykkjebo Groups. Consisting primarily of metavolcanic rocks overlain by a thin veneer of feldspathic quartzites and muscovite schists, the Sunnarvik Group is intruded by granodioritic to keratophyric igneous rocks, and is characterized by a greenschist-facies foliation that generally lacks ductile asymmetric shear fabrics.

The Hasteinen and western Hornelen Basins rest unconformably on the Sunnarvik Group, whereas the northern, eastern, and western margins of the Hornelen Basin are in fault contact with the Eikefjord and Lykkjebo Groups. Sedimentary facies within the Hornelen Basin vary from proximal conglomerates near the basin margins, to sandstones and distal shales in the interior of the basin (Steel et al., 1985), suggesting that these basins formed as isolated...
Figure 2. Geologic map of the Hornelen Region (based on mapping by Bryhni and Lutro, 2000a, 2000b, 2000c; this study) showing sample locations, major ductile-brittle faults, extent of top-W Nordfjord-Sogn Detachment Zone shear fabrics, and structural data. All stereograms are lower hemisphere, equal-area plots. Fault slip data are plotted with fault plane orientations indicated by great circles, striations indicated by arrows illustrating slip direction, and principal stress axes determined through stress inversion indicated by points labeled 1–3.
basins. Clast studies (Cuthbert, 1991), together with 1700–1600 Ma, 1000 Ma, and Ordovician detrital zircon populations (Johnston et al., 2003; Johnston, 2006), suggest sourcing from the Sunnarvik, Eikefjord, and Lykkjebo Groups. Bedding within the Hornelen sedimentary rocks dips consistently 10–30° E across the length of the basin, yet despite this tilting and exaggerated stratigraphic thickness, the Hornelen Basin is apparently unaffected by either syn- or post-depositional faults of significant offset, and reached only low greenschist-facies conditions (Norton, 1987).

STRUCTURAL GEOLOGY

The rocks of the Hornelen Region have complicated, polygenetic deformational histories with overprinting structures that formed sequentially during E-W Caledonian contraction and extension, followed by Late Devonian through Early Carboniferous N-S contraction, and multiple episodes of E-W extension active into the Permian (e.g., Braathen, 1999). Although the microfabrics and original orientation of structures formed during Caledonian contraction have been altered by subsequent deformation, remnants of the Caledonian contraction are preserved in isoclinal folds that repeat the tectonostratigraphic section throughout the study area. The folds are most easily seen at the outcrop scale within the Lykkjebo Group quartzites, and have axes that trend WNW and axial planes that are subparallel to the foliation. Locally, these folds are associated with a weak axial planar cleavage defined by minor growth and bending of micaceous minerals. At the map scale, the tectonostratigraphic contacts between the Lykkjebo and Eikefjord Groups are also isoclinally folded (Fig. 3A), and the repetition of the Lykkjebo Group above and below the Eikefjord Group (Fig. 2) suggests significant thickening of the local tectonostratigraphy, and that the Middle Allochthon regional geometry may be an overturned antcline.

During Caledonian exhumation, these early contractional structures were strongly overprinted by E-W extension and top-W shear fabrics that define the Nordfjord-Sogn Detachment Zone. In the Western Gneiss Complex, Svartekari, Eikefjord, and Lykkjebo Groups, this extensional deformation is characterized by the development of a pervasive WNW-SEE stretching lineation that is defined by biotite, quartz ribbons, and amphibole that either formed or rotated into the stretching direction (Fig. 2). Although symmetric fabrics dominate the bulk of the Western Gneiss Complex, the asymmetric shear fabrics of the Nordfjord-Sogn Detachment Zone become increasingly prominent in the 500–1000 m below the contact with the overlying allochthons, and are pervasively developed throughout the Svartekari, Eikefjord, and Lykkjebo Groups in a 2- to 6-km-thick shear zone. Asymmetric structures within the Nordfjord-Sogn Detachment Zone include S-C fabrics, sigma and delta clasts, shear bands (extension crenulation cleavage), and asymmetric boudinage, and yield consistently top-WNW sense of shear (Fig. 3B, C). The Nordfjord-Sogn Detachment Zone is also characterized by a series of discrete ductile-brittle, low-angle detachments, also, with top-W displacement, that reactivated and cut the high-temperature asymmetric shear fabrics. The uppermost of these low-angle detachments, and high-angle, E-W striking strike-slip and normal faults juxtapose the top-W fabrics of the Nordfjord-Sogn Detachment Zone with the Sunnarvik Group and the Devonian-Carboniferous basins. Consistent E-W lineations are not found in the Sunnarvik Group or the Devonian-Carboniferous basins, indicating that ductile stretching during Caledonian extension was limited to rocks below the Upper Allochthon.

Quartz Lattice-Preferred Orientations in High-Temperature Rocks

To better understand deformation history, strain partitioning, and variability within the Nordfjord-Sogn Detachment Zone, quartz microfabrics were analyzed from sixteen Lykkjebo Group quartzites at different tectonostratigraphic levels throughout the shear zone (Table 1). Lykkjebo Group quartzites are arkosic, containing 20–40% feldspar and up to 10% muscovite. Petrographic observations reveal that feldspar is typically weakly deformed, with local undulatory extinction, minor subgrain development, and late brittle fractures. Quartz is dynamically recrystallized in all samples, and textures (Hirth and Tullis, 1992; Stipp et al., 2002b) reveal that the dominant recovery mechanism changed from subgrain rotation (SGR, typified by quartz ribbons and core-and-mantle structures) at higher structural levels to grain-boundary migration (GBM, typified by irregular grain shapes with ‘island grains’ and lobate grain boundaries) in the lowest quartzite unit (Fig. 3D, E, F). Top-W shear fabrics—including mica-fish, shear bands, and S-C fabrics (Fig. 3D, E, F)—were observed in ten of the analyzed samples, with the remaining six displaying either indistinct or symmetric shear fabrics; top-E microstructures were not observed in any of the quartzite thin sections.

Quartz lattice-preferred orientations (LPOs) were measured from quartz-rich areas of the samples using electron-backscatter diffraction (EBSD). Because the normal to the lattice-slip plane rotates toward the shear plane and the lattice-slip direction rotates toward the shear direction during progressive deformation, LPOs can be used to investigate shear symmetry, qualitatively assess constrictional-flattening strain, and determine active slip systems (Schmid and Casey, 1986). Diffraction patterns were collected on 1.4 x 1-mm grids with a 5-μm step size, using a JEOL 6300 scanning electron microscope coupled with an HKL Nordlys camera. CHANNEL 5 HKL software was used to index the diffraction patterns, create crystal orientation maps, and ultimately define and characterize individual quartz grains by locating grain boundaries (identified where lattice misorientations exceed 10°). LPOs generated from crystal orientation maps were checked to ensure that they were representative of the entire thin section by creating secondary LPOs from diffraction patterns collected on cm-scale grids with step sizes much greater than the grain size.

All the quartzite samples examined by EBSD yielded strong LPOs with peak c-axis concentrations ≥3 times mean uniform distribution (Fig. 4). Top-W LPO asymmetry, distinguished by c- and a-axis patterns that are rotated counterclockwise with respect to the principal strain axes, is observed in thirteen of sixteen samples and is indicative of simple shear. These LPOs results support top-W shear in seven samples that exhibit top-W petrographic microstructures and suggest that top-W shear was also important in six samples that do not contain petrographically distinct asymmetry. Top-E LPO asymmetry, observed in three samples that contain clear top-W shear bands, may be the result of perturbations in the flow field creating local top-E displacement within the thin section, back rotation of foliation due to well-developed shear bands, or variations in the ages of the thin-section textures relative to the quartz LPOs. The LPOs from the structurally high quartzites yield c-axis girdles compatible with a combination of (c)<a>, {r}<a>, and {m}<a> slip, and are distinct from LPOs in the lowermost quartzites that display c-axis maxima near the Y direction that are compatible with [m]<a> slip (Fig. 4A, B). This change from c-axis girdles to single c-axis maxima is consistent with the previously discussed petrographic observations that indicate a change in recovery mechanism from subgrain rotation to grain-boundary migration (Stipp et al., 2002b) from higher to lower structural levels within the Lykkjebo Group quartzites. A-axis patterns at all structural levels and regardless of shear-sense (Fig. 4) form maxima near the X direction, and minima that plot in the X-Z plane, or in the case where only (c)<a> slip is observed, in the X-Y plane. As opposed to constrictional strain, which forms small circles near the X direction, or flattening strain, which forms...
Figure 3. (A-C) Outcrop structures: (A) Overturned folding of the contact between the Eikefjord Group and the Lykkjebø Group, here shown with an upside-down basal conglomerate. (B) Penetrative shear bands in the Eikefjord Group indicating top-W (toward 279°) sense of shear. (C) Feldspar sigma clasts indicating top-W (275°) sense of shear in the Eikefjord Group. (D-F) Microstructures: (D) Quartzite sample 2806A2 from structurally high levels of the Lykkjebø Group showing top-W S-C fabrics and recrystallized grains mantling larger grains (white arrows) indicative of subgrain-rotation recovery. (E) Top-W, recrystallized feldspar sigma clast in quartzite sample 2804L31 from low structural levels of the Lykkjebø Group. (F) Detail of 284L31 showing lobate quartz grain boundaries indicative of grain-boundary migration recovery.
small circles near the Y direction, these a-axis patterns are generally indicative of plane strain (Schmid and Casey, 1986).

Geometric mean-grain diameters, also measured from EBSD crystal-orientation maps, were applied to grain-size piezometers to determine stress variations across the Nordfjord-Sogn Detachment Zone (Table 1). The grain diameter in samples with clear top-W LPO asymmetry remain active through the Permian and Jurassic. The deformation was accompanied by regional folding of the entire tectonostratigraphy and resulted in a combination of (c)<a>, {r}<a>, and {m}<a> slip and a-axis patterns indicative of plane strain (Fig. 4C). Whereas both samples exhibit top-W microstructures including mica fish and shear bands, and strong top-W LPO asymmetry is observed in sample 3701E3, the symmetric LPO of sample 3701E4 is most likely the result of foliation back-rotation during the formation of late, well-developed shear bands. A mean grain size of 25.4 ± 2.2 µm from these Blåfjellet Detachment samples implies maximum shear stresses of ~37 MPa.

Two quartzite samples from the mylonite zone enclosing the low-angle Blåfjellet Detachment at the south end of Storfjorden yielded LPOs with c-axis girdles compatible with a combination of (c)<a>, {r}<a>, and {m}<a> slip and a-axis patterns indicative of plane strain (Fig. 4C). Whereas both samples exhibit top-W microstructures including mica fish and shear bands, and strong top-W LPO asymmetry is observed in sample 3701E3, the symmetric LPO of sample 3701E4 is most likely the result of foliation back-rotation during the formation of late, well-developed shear bands. A mean grain size of 25.4 ± 2.2 µm from these Blåfjellet Detachment samples implies maximum shear stresses of ~37 MPa.

These low-angle detachments are cut by E-W striking, high-angle normal and strike-slip faults (Braathen, 1999; this study). Fault-slip analysis of m-scale fault planes near the Eikefjord and Standal Faults indicates initial E-W stretching and vertical thinning strongly overprinted by E-W stretching and N-S shortening (Fig. 2). This analysis is consistent with early E-W to SE-NW stretching followed by late sinistral shear inferred for the E-W striking, high-angle normal and strike-slip faults (Braathen, 1999; this study). Fault-slip analysis of m-scale fault planes near the Eikefjord and Standal Faults indicates initial E-W stretching and vertical thinning strongly overprinted by E-W stretching and N-S shortening (Fig. 2). This analysis is consistent with early E-W to SE-NW stretching followed by late sinistral shear inferred for the E-W striking Eikefjord and Standal Faults. This late faulting was accompanied by regional folding of the entire tectonostratigraphy and resulted in a combination of (c)<a>, {r}<a>, and {m}<a> slip and a-axis patterns indicative of plane strain (Fig. 4C). Whereas both samples exhibit top-W microstructures including mica fish and shear bands, and strong top-W LPO asymmetry is observed in sample 3701E3, the symmetric LPO of sample 3701E4 is most likely the result of foliation back-rotation during the formation of late, well-developed shear bands. A mean grain size of 25.4 ± 2.2 µm from these Blåfjellet Detachment samples implies maximum shear stresses of ~37 MPa.

Two quartzite samples from the mylonite zone enclosing the low-angle Blåfjellet Detachment at the south end of Storfjorden yielded LPOs with c-axis girdles compatible with a combination of (c)<a>, {r}<a>, and {m}<a> slip and a-axis patterns indicative of plane strain (Fig. 4C). Whereas both samples exhibit top-W microstructures including mica fish and shear bands, and strong top-W LPO asymmetry is observed in sample 3701E3, the symmetric LPO of sample 3701E4 is most likely the result of foliation back-rotation during the formation of late, well-developed shear bands. A mean grain size of 25.4 ± 2.2 µm from these Blåfjellet Detachment samples implies maximum shear stresses of ~37 MPa.

Two quartzite samples from the mylonite zone enclosing the low-angle Blåfjellet Detachment at the south end of Storfjorden yielded LPOs with c-axis girdles compatible with a combination of (c)<a>, {r}<a>, and {m}<a> slip and a-axis patterns indicative of plane strain (Fig. 4C). Whereas both samples exhibit top-W microstructures including mica fish and shear bands, and strong top-W LPO asymmetry is observed in sample 3701E3, the symmetric LPO of sample 3701E4 is most likely the result of foliation back-rotation during the formation of late, well-developed shear bands. A mean grain size of 25.4 ± 2.2 µm from these Blåfjellet Detachment samples implies maximum shear stresses of ~37 MPa.
series of open, W-plunging anticlines and synclines with 5- to 10-km wavelengths (Fig. 2). Stratigraphic evidence from the Kvamshesten Basin indicates that deposition was synchronous with N-S contraction, and suggests that the Devonian-Carboniferous Basins were initially opened in a constrictional strain field (Chauvet and Séranne, 1994; Krabbendam and Dewey, 1998; Osmundsen et al., 1998). However, these broad folds also deform Hornelen Basin deposits, the Blåfjellet and Hornelen Detachments, as well as 40Ar/39Ar mica and K-feldspar age contours farther north in the Western Gneiss Complex, and indicate that at least some of this folding occurred in the upper crust after 380 Ma, and possibly as late as 335 Ma (Root et al., 2005).

In summary, the new structural data provide several new results constraining the key structural events and styles of deformation in the Hornelen Region during the Caledonian. First, outcrop- to map-scale isoclinal folds within the allochthons likely produced during early Caledonian contraction are overprinted by top-W shear within the Nordfjord-Sogn Detachment Zone. Second, plane-strain top-W shear within the zone, restricted to the uppermost several hundred meters of the Western Gneiss Complex and the Svartekari, Eikefjord, and Lykkjebo Groups, is characterized by recovery mechanisms in quartz that change from GBM at lower structural levels to SGR at higher structural levels, whereas maximum shear stresses were relatively constant at 24–28 MPa across the shear zone. Third, continued top-W displacement within the zone occurred along discrete ductile-brittle detachment faults with ductile envelopes characterized by SGR recovery mechanisms in quartz and elevated maximum shear stresses of 37 MPa, and brittle cores containing pseudotachylytes and fault gouge. Finally, the top-W fabrics of the Nordfjord-Sogn Detachment Zone are cut by E-W striking strike-slip faults and folded into series of 5- to 10-km wavelength, W-plunging open folds.
Hornelen segment of the Nordfjord-Sogn Detachment Zone

End-member phase activities were calculated from microprobe spot analyses using AX (written and distributed by Tim Holland and Roger Powell), and P-T estimates were determined with THERMOCALC v3.21 using the February 2002 database (Powell and Holland, 1988) to either calculate intersections among well-known geothermometers and geobarometers, or, where preferred reactions were not applicable, average intersections among all reactions (Table 2, Fig. 5).

The Devonian-Carboniferous basins are characterized by post-Caledonian low greenschist-facies metamorphism with the local development of a weak cleavage and metamorphic chlorite (Séranne and Séguret, 1987). The structurally lower Sunnarvik Group exhibits primarily Caledonian greenschist-facies assemblages defined by chlorite + muscovite ± albite ± quartz ± biotite ± epidote. Small, prograde-zoned garnets (≤1 mm) associated with albite + chlorite + muscovite + epidote in one gneiss from Stavøya indicate local albite-epidote-amphibolite facies conditions. Thermobarometry using all

METAMORPHIC PETROLOGY

Regional mapping and petrology in the Hornelen Region indicate that metamorphic grade increases down-section in a series of abrupt jumps across tectonostratigraphic contacts (e.g., Wilks and Cuthbert, 1994). The extent of these metamorphic breaks and the depths from which each tectonostratigraphic unit was exhumed were quantified with thermobarometry. Phase compositions were measured at University of California, Santa Barbara, on a Cameca SX-50 electron microprobe operated at 15 kV and 15 nA (Table DR1),^1^ using natural and synthetic mineral standards.

^1^GSA Data Repository item 2007209, Table DR1, electron microprobe spot analyses, and Appendix DR1, details for Sm-Nd isotopic analysis, is available at http://www.geosociety.org/pubs/ft2007.htm or by request to editing@geosociety.org.

Geological Society of America Bulletin, IN PRESS
Johnston et al

Geological Society of America Bulletin, Month/Month 2007 IN PRESS

reactions among garnet + chlorite + muscovite + albite in the latter rock yields 9.1 ± 1.3 kbar and 442 ± 71 °C, indicating burial to ~30 km. Similar conditions were recorded by Upper Allochthon rocks on Bremangerlandet where green-schist-low amphibolite-facies fabrics defined by chlorite + mica + garnet in pelitic assemblages overprint hornfels fabrics associated with the Bremanger pluton (Kalvåg mélange of Bryhni and Lyse, 1985; Cuthbert, 1991).

In the Lykkjebo Group, upper amphibolite-facies idioblastic peak-pressure assemblages are overprinted by lower amphibolite-greenschist-facies retrograde fabrics. This overprinting relationship is best seen in a distinctive garnet-muscovite schist found in all the structurally repeated sections of the Lykkjebo Group along the contacts with the Eikefjord Group. Characteristic albite porphyroblasts (An00–05) contain inclusions of high-silica muscovite (3.2–3.3 atoms per formula unit, pfu) + high-Mg# biotite + garnet ± epidote/zoisite ± amphibole ± rutile. This peak-pressure assemblage is cut by retrograde, asymmetric shear fabrics composed of low-silica (3.1 atoms pfu) muscovite + low Mg# biotite + garnet + oligoclase (An15-30) ± chlorite ± epidote/zoisite ± ilmenite (Fig. 6). Garnets up to 5 mm in diameter in the matrix and included within albite porphyroblasts display bell-shaped Mn profiles without rim spikes and U-shaped Mg# profiles that indicate prograde growth. In retrogressed samples, increased Mg# ratios and Mn spikes in slightly resorbed garnet rims suggest heating during the initial stages of decompression (Kohn and Spear, 2000). Growth of chlorite in the foliation and along shear bands indicates that retrograde deformation within these pelites continued.

TABLE 2. THERMOCALC PRESSURE-TEMPERATURE ESTIMATES FROM THE HORNELN REGION

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unit</th>
<th>Thermometer</th>
<th>Barometer</th>
<th>Phase assemblage</th>
<th>T (°C)</th>
<th>P (kbar)</th>
<th>Cor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3727C</td>
<td>Sunnarvik</td>
<td>THERMOCALC: average P–T</td>
<td></td>
<td>peak</td>
<td>442 ± 71</td>
<td>9.1 ± 1.3</td>
<td>0.85</td>
</tr>
<tr>
<td>2801N</td>
<td>Lykkjebo</td>
<td>GARB</td>
<td>GBMP</td>
<td>peak</td>
<td>587 ± 63</td>
<td>14.9 ± 1.5</td>
<td>0.91</td>
</tr>
<tr>
<td>2803AA1</td>
<td>Lykkjebo</td>
<td>GARB</td>
<td>GBMP</td>
<td>peak</td>
<td>610 ± 61</td>
<td>19.5 ± 1.2</td>
<td>0.62</td>
</tr>
<tr>
<td>2803AA2</td>
<td>Lykkjebo</td>
<td>GARB</td>
<td>GBMP</td>
<td>peak</td>
<td>541 ± 76</td>
<td>14.0 ± 1.8</td>
<td>0.95</td>
</tr>
<tr>
<td>2805D1</td>
<td>Lykkjebo</td>
<td>GARB</td>
<td>GBMP</td>
<td>peak</td>
<td>549 ± 72</td>
<td>15.8 ± 1.4</td>
<td>0.46</td>
</tr>
<tr>
<td>2813X</td>
<td>Lykkjebo</td>
<td>GARB</td>
<td>GBMP</td>
<td>peak</td>
<td>537 ± 78</td>
<td>16.4 ± 2.1</td>
<td>0.94</td>
</tr>
<tr>
<td>2813X</td>
<td>Lykkjebo</td>
<td>GARB</td>
<td>GBMP</td>
<td>retrograde</td>
<td>631 ± 96</td>
<td>11.6 ± 1.7</td>
<td>0.94</td>
</tr>
<tr>
<td>3705A4</td>
<td>Lykkjebo</td>
<td>GARB</td>
<td>GBMP</td>
<td>peak</td>
<td>540 ± 78</td>
<td>15.2 ± 2.0</td>
<td>0.94</td>
</tr>
<tr>
<td>2804L3</td>
<td>Lykkjebo</td>
<td>GARB</td>
<td>GBMP</td>
<td>peak</td>
<td>538 ± 72</td>
<td>14.7 ± 1.4</td>
<td>0.41</td>
</tr>
<tr>
<td>2811BC2</td>
<td>Lykkjebo</td>
<td>GARB</td>
<td>GBMP</td>
<td>retrograde</td>
<td>519 ± 72</td>
<td>8.5 ± 1.2</td>
<td>0.93</td>
</tr>
<tr>
<td>2815A</td>
<td>Eikefjord</td>
<td>GARH</td>
<td>GHPQ</td>
<td>peak</td>
<td>607 ± 92</td>
<td>17.7 ± 2.4</td>
<td>0.95</td>
</tr>
<tr>
<td>2815MF</td>
<td>Eikefjord</td>
<td>GARH</td>
<td>GHPQ</td>
<td>retrograde</td>
<td>557 ± 77</td>
<td>14.0 ± 1.5</td>
<td>0.38</td>
</tr>
<tr>
<td>2815MM</td>
<td>Eikefjord</td>
<td>GARH</td>
<td>GHPQ</td>
<td>retrograde</td>
<td>567 ± 82</td>
<td>15.3 ± 2.1</td>
<td>0.93</td>
</tr>
<tr>
<td>2813V</td>
<td>Eikefjord</td>
<td>GARH</td>
<td>GHPQ</td>
<td>peak</td>
<td>562 ± 74</td>
<td>14.3 ± 1.4</td>
<td>0.37</td>
</tr>
<tr>
<td>2803CC</td>
<td>Western Gneiss Complex</td>
<td>GrtCpx</td>
<td>GrtCpxPhe</td>
<td>peak</td>
<td>682 ± 73</td>
<td>24.6 ± 2.1</td>
<td>0.57</td>
</tr>
</tbody>
</table>

‡Uncertainties are ±1σ.
§Correlation coefficient from THERMOCALC.
through greenschist-facies conditions outside the stability field of garnet.

The P-T paths of the Lykkjebo Group pelites were calculated in THERMOCALC, using the intersection between the garnet-biotite (GARB, Ferry and Spear, 1978) thermometer and garnet-biotite-muscovite-plagioclase (GBMP, Ghent and Stout, 1981) barometer. These estimates are statistically indistinguishable from intersections between GARB and garnet-biotite-muscovite barometry (GBM, e.g., Konopasek, 1998), which do not rely upon the anorthite content of plagioclase. Mineral analyses from the albite-inclusion suite and garnet mantles in all eight samples yield peak conditions ranging from 14.0 to 17.7 kbar and 537 to 618 °C. In contrast, analyses from matrix phases and retrograde garnet rims that define top-W asymmetric shear fabrics from three of the eight samples yield metamorphic conditions ranging from 8.5 to 11.6 kbar and 519 to 641 °C.

Upper-amphibolite facies peak conditions with lower-pressure overprints are also recorded in a variety of amphibole schists in the Eikefjord Group. In plagioclase + biotite + amphibole ± muscovite schists, garnet typically forms <0.5-mm inclusions within albite, and occasionally matrix porphyroblasts up to 3 mm in diameter in more felsic layers. Garnets typically display bell-shaped Mn profiles with increasing Mg# toward rims, whereas Mn spikes near rims in many samples indicate garnet resorption. Amphibole is zoned, with sharp increases in Al content and decreases in Mg# near grain boundaries with garnet, whereas plagioclase is composed of albite overgrown by oligoclase. P-T conditions in these amphibole-bearing rocks were calculated with THERMOCALC, using garnet-hornblende thermometry (GAHR, Graham and Powell, 1984) and garnet-hornblende-plagioclase-quartz barometry (GHPQ, Kohn and Spear, 1990). Peak conditions of 16.9–18.0 kbar at 577–582 °C were recovered from two samples using amphibole + garnet rim compositions included within albite, whereas retrograde conditions of 8.3–8.9 kbar at 524–628 °C from three samples were calculated using mineral compositions from oligoclase, garnet mantles, and amphiboles judged unaffected by late exchange reactions. There is no significant difference in the peak or retrograde pressures observed in the Eikefjord and Lykkjebo Groups, both of which indicate maximum burial depths of ~45–60 km followed by retrograde deformation at ~30–40 km depth.

The Eikefjord Group also includes lenses of coarse garnet amphibolites and rare garnet anorthosites preserved in low-strain zones. In contrast to the schists of the Lykkjebo and Eikefjord Groups, garnets from these rocks are homogenous in Mn and Mg, and Mn-rich resorbed rims are characterized by sharp decreases in Mg# that suggest cooling during retrogression. Although quantitative thermobarometric work on these rocks was precluded by textural evidence for mineral disequilibria, compositionally homogeneous garnets indicate metamorphic conditions high enough for diffusion in garnet and suggest that these rocks may be similar to relicts of Sveconorwegian granulate-facies metamorphism reported throughout western Norway in rocks correlated across tectonostratigraphic contacts and retrograde overprints in the Lykkjebo and Eikefjord Groups. Ellipse shading refers to key in Figure 2.

Structurally below the Lykkjebo and Eikefjord Groups, peak metamorphic conditions within the Western Gneiss Complex reached eclogite facies. Although the felsic host gneisses of the Western Gneiss Complex are composed of amphibolite-facies assemblages, m- to km-scale mafic boudins preserve the assemblage garnet + omphacite ± amphibole ± muscovite ± rutile (e.g., Cuthbert et al., 2000). One sample from the Naustdal eclog-
Probable Sveconorwegian age in the Eikefjord Group, and a Late-Caledonian event within the Eikefjord and Lykkjebø Groups associated with top-W shear fabrics at 8–12 kbar and 520–650 °C at a crustal depth of ~30–40 km.

Sm-Nd GARNET GEOCHRONOLOGY

Sm-Nd geochronology of garnet cores and rims was performed to constrain the age and duration of prograde metamorphism within the allochthons and provide an upper limit on the timing of top-W deformation within the Nordfjord-Sogn Detachment Zone. Three of the coarse garnet-muscovite schists from the Lykkjebø Group that display only minor retrograde deformation were selected for micro-sampling of garnet cores, garnet rims, and matrix (whole-rock minus garnet) fractions. To ensure that garnet core and rim fractions were accurately micro-sampled and that high-REE element inclusions in garnet were avoided, garnets were placed in epoxy grain mounts, ground down to the geometric center of the garnets, and polished for electron microscopy. Phase zoning and the relative position of garnet cores and rims were identified through compositional transects acquired with an energy-dispersive detector, and back-scattered electron imaging was used to locate high-REE element inclusions within the garnet. Micro samples of 5–14 mg were collected using a Dremel tool with a Brasserle Instruments diamond bur to scour ~1-mm-deep sample pits (inset Fig. 7A). Garnet fractions were sampled directly from garnet mounts, and matrix fractions were sampled from unpolished thick-sections cut from hand samples. Isotopic analysis (described in detail in Appendix DR1; see footnote 1) was performed at the University of Arizona following the procedure of Ducea et al. (2003).

The Sm/Nd isotopic data yield core/rim ages of 425.1 ± 1.6/415.0 ± 2.3 Ma and 422.3 ± 1.6/407.6 ± 1.3 Ma for samples J2804L3 and J2805D1, respectively, and a rim age of 414.4 ± 1.6 Ma for sample J2801N (Table 3, Figure 7A, B). As indicated by thermobarometry and the presence of bell-shaped Mn profiles, these garnets never exceeded the closure temperature of >650 °C for Sm-Nd in garnet (Dodson, 1973; Van Orman et al., 2002), and core ages are therefore interpreted to represent the time of initial garnet growth, whereas rim ages represent the end of garnet growth during peak metamorphism. Because two-point isochrons cannot test for original homogeneity in 143Nd/144Nd among phases or ensure that all phases remained closed to Sm/Nd diffusion, these ages must be interpreted cautiously. Furthermore, because the core ages use a matrix composition that remained open to Sm/Nd diffusion after the closure of garnet cores, they should be regarded as minima. However, the high closure temperature of Sm/Nd diffusion and the similarities in age of the three analyzed samples suggest that a maximum age of 425–422 Ma and a rim age of 415–407 Ma represent robust ages for the onset and end of amphibolite-facies metamorphism in the Lykkjebø Group.

Figure 7. Sm/Nd two-point isochrons for (A) garnet cores and (B) rims from the Lykkjebø Group indicate garnet growth began at 425–422 Ma and ended by 415–407 Ma (uncertainties on individual data are smaller than shown). Inset to (A) shows a garnet from Lykkjebø Group garnet-muscovite schist 2801N mounted in epoxy and micro-sampled for cores and rims.
DISCUSSION

Strain Partitioning within the Nordfjord-Sogn Detachment Zone

The new structural data and quartz-fabric analyses place constraints on strain partitioning along tectonostratigraphic contacts and within the top-W fabrics of the Nordfjord-Sogn Detachment Zone. Consistent top-W shear-fabrics and quartz LPOs throughout the shear zone indicate that top-W displacement affected a broad shear zone focused within the Svartekari, Eikefjord, and Lykkjebø Groups, although the progressive change from subgrain-rotation recovery to grain-boundary-migration recovery observed in quartz from higher to lower structural levels across the zone indicates either downward-decreasing strain rate with constant temperature or downward-increasing strain rate with downward-increasing temperature (e.g., Stipp et al., 2002a). To assess these possibilities, strain rates across the shear zone were calculated using the flow laws of Hirth et al. (2001) with differential stresses of 48 MPa and 55 MPa determined from structurally high and low Lykkjebø Group quartz grain sizes, respectively, and f_{H2O} at 1000 MPa confining pressure determined from retrograde barometry (Table 4). Assuming temperatures of 550 °C, structurally high Lykkjebø Group quartzites yield strain rates of $2 \times 10^{-10} \text{s}^{-1}$; investigating a range of geotherms from \sim0 to 50 °C/km and temperatures of 550–600 °C, yields strain rates of $1 \times 10^{-10} - 4 \times 10^{-10} \text{s}^{-1}$ for structurally low Lykkjebø Group quartzites. The similarity between calculated strain rates in upper and lower structural levels precludes discrimination between the possible mechanisms for the downward switch from subgrain-rotation recovery to grain-boundary migration recovery. However, the data indicate that variation in strain rate was small throughout the structural stack. Measured grain sizes and calculated strain rates are comparable to observations in quartz aggregates from other extensional detachments (e.g., Hacker et al., 1990; Hacker et al., 1992). When integrated across the entire thickness of the Nordfjord-Sogn Detachment Zone, however, they yield unrealistically large shear displacements over million-year time scales. These high displacement rates may be the result of extrapolating a theoretical piezometer and experimental flow laws for pure quartzite to natural deformation of quartzofeldspathic rocks. Regardless of the absolute values of the calculated strain rates, the consistency of quartz grain sizes throughout the shear zone suggests that strain rates were relatively constant during high-temperature shear along the Nordfjord-Sogn Detachment Zone.

Assuming a temperature of 400 °C with f_{H2O} normalized to 500 MPa confining pressure, the quartzites sampled from the ductile-brittle detachments deformed at significantly slower strain rates of $2 \times 10^{-10} \text{s}^{-1}$ (Table 4B). The slower strain rates and m- to dm-scale thickness suggest that the shear zones associated with these ductile-brittle detachments were only responsible for relatively minor and final stages of top-W displacement within the Nordfjord-Sogn Detachment Zone.

These results indicate that top-W strain within the Nordfjord-Sogn Detachment Zone was initially rather evenly distributed at all structural levels throughout the allochthonous nappes, and was not concentrated along the Western Gneiss Complex/allochthon contact. These data support the qualitative observation of distributed shear strain throughout the Lower and Middle allochthons by Wilks and Cuthbert (1994). During continued extension and exhumation, the final increments of displacement within the Nordfjord-Sogn Detachment Zone were progressively focused along discrete ductile-brittle shear zones that cut the earlier high-temperature top-W fabrics.

Crustal Exhumation and the Depth of Asymmetric Shear Fabrics within the Nordfjord-Sogn Detachment Zone

The new thermobarometry quantifies total crustal exhumation across the Nordfjord-Sogn Detachment Zone and the depth at which asymmetric shear fabrics within the shear zone were initiated. Metamorphic breaks between tectonostratigraphic units in the Hornelen Region are similar to observations from the Solund Region that indicate discrete jumps in pressure from 7–9 kbar in the Upper Allochthon to 14–16 kbar in the Middle Allochthon, and finally 23 kbar in Western Gneiss Complex basement.
Timing of Allochthon Burial and Asymmetric Shear Fabrics within the Nordfjord-Sogn Detachment Zone

Our new garnet Sm/Nd ages have significant implications regarding the spatial variation and timing of Caledonian burial in the Middle Allochthon. Garnet core ages of 425–422 Ma coincide with the post-Wenlockian (428–423 Ma) emplacement of the Solund-Stavfjord Ophiolite (Andersen et al., 1998) and the 423–422 Ma zircon ages from eclogites in the Middle Allochthon Lindås nappe (Bingen et al., 2004), suggesting that the burial of the Middle Allochthon to depths of 45–60 km initiated during ophiolite emplacement. However, garnet rim ages of 415–407 Ma overlap with the upper range of 412–400 Ma Sm/Nd and U/Pb ages for the timing of (U)HP metamorphism north of Nordfjord (Carlswell et al., 2003; Root et al., 2004; Kylander-Clark et al., 2007) indicating that this garnet growth may have been associated with the early stages of the Caledonian UHP event. In contrast, rocks of Middle Allochthon affinity in the hanging wall of the Nordfjord-Sogn Detachment Zone in the Kvamshesten area (e.g., Andersen et al., 1998; Corfù and Andersen, 2002) cooled through muscovite closure by 450 Ma and were at the surface during the deposition of the Devonian-Carboniferous Kvamshesten Basin (Andersen et al., 1998). This suggests that rocks of Middle Allochthon affinity from different structural levels experienced drastically different Late Caledonian histories. While large tracts of the Middle Allochthon remained at or near the surface, other levels of the Middle Allochthon were (re)buried during the Late Silurian and Early Devonian. The age of 425–407 Ma for prograde garnet growth within Middle Allochthon rocks from the Hornelen Region implies that peak conditions achieved during this second episode of Middle Allochthon burial either slightly predated, or were synchronous with, subduction of the Western Gneiss Complex to UHP depths.

Garnet Sm/Nd ages can be used in conjunction with existing ⁴⁰Ar/³⁹Ar muscovite cooling ages from the Hornelen Region to place upper and lower age brackets on deformation along the Nordfjord-Sogn Detachment Zone. Because the top-W fabrics of the shear zone overprint the peak assemblage associated with garnet growth, 415–to 407-Ma garnet rim ages define an upper age limit for the initiation of top-W displacement along the shear zone. Muscovite ages are used to define the lower age limit for ductile displacement within the shear zone because the bulk of the exhumation occurred within the ductile shear fabrics of the shear zone at amphibolite-facies temperatures greater than muscovite closure to argon. Within the Hornelen Region, muscovite ages gradually increase up-section from 396 Ma in the Western Gneiss Complex to 402 Ma in the Lykkjebø Group (Andersen, 1998), whereas older ages of 419–417 Ma in the structurally highest levels of the Lykkjebø Group are the result of excess argon (Johnston et al., 2006). Together, these ages bracket top-W ductile displacement within the zone to ca. 410–400 Ma, and imply that displacement and exhumation associated with the shear zone were initiated either during, or immediately after, (U)HP metamorphism in the Western Gneiss Complex.

Significance of Normal-Sense Fabrics within the Nordfjord-Sogn Detachment Zone and a Model for UHP Exhumation

The synthesis of these quantitative results indicates that top-W displacement within the Nordfjord-Sogn Detachment Zone exhumed (U)HP rocks from the base of the crust, but not from mantle depths, and requires a new three-stage exhumation model (Fig. 8). Evidence for an initial stage of exhumation from mantle depths is provided by the abrupt jump in metamorphic pressures across the Western Gneiss Complex/allochthon contact from mantle conditions of ~25 kbar to lower crustal conditions at 13–18 kbar. However, several lines of evidence suggest that these two units were juxtaposed prior to the onset of top-W displacement within the zone. Whereas eclogite-facies asymmetric fabrics are not observed at any tectonometamorphic level within the Nordfjord-Sogn Detachment Zone, the new thermobarometry from the Eikefjord and Lykkjebø Groups and similar amphibolite-facies asymmetric shear fabrics in the uppermost levels of the Western Gneiss Complex (e.g., Engvik and Andersen, 2000) indicates that the top-W shear fabrics of the shear zone initiated at amphibolite-facies conditions typical of lower crustal depths of 30–40 km and not at mantle depths. Furthermore, quartz microstructures that indicate relatively evenly distributed shear strain throughout the shear zone place the bulk of the top-W displacement within the Svartekari, Eikefjord, and Lykkjebø Groups. Because the bulk of the displacement within the shear zone occurred within the alloclithons and not along the Western Gneiss Complex/allochthon contact, the top-W fabrics of the shear zone cannot have been responsible for the juxtaposition of the amphibolite-facies alloclithons with the (U)HP Western Gneiss Complex, nor can they have been the primary mechanism responsible for exhuming the Western Gneiss Complex from mantle depths to the base of the crust. Finally, eclogites in rocks of allochthonous affinity farther north (Young et al., 2007) suggest that the observed gap in metamorphic pressures in the study area may also have been exacerbated by local phase disequilibrium in the alloclithons, or poor preservation of peak pressure assemblages.

In this paper, we follow Walsh et al. (2007) and suggest that the break in metamorphic pressures across the Western Gneiss Complex/allochthon contact was created as the Western Gneiss Complex ascended buoyantly through the mantle via lower crustal-wedge extrusion and was underplated beneath the alloclithons (Fig. 8B). This ascent may have been partially accommodated by localized top-W, normal-sense displacement along the Western Gneiss Complex/allochthon contact (e.g., Andersen and Jamtveit, 1990; Krabbendam and Dewey, 1998), although any fabrics associated with this displacement were overprinted by subsequent crustal exhumation. Upon arrival at the lower crust, vertical pureshear thinning of 50–80% in the Western Gneiss Complex accommodated additional exhumation (Dewey et al., 1993; Young et al., 2007) and further exaggerated the break in metamorphic pressures between the Western Gneiss Complex and the alloclithons.

The second and third stages of (U)HP exhumation—accounting for exhumation of (U)HP rocks from the lower crust to mid and upper crustal levels, respectively—were achieved...
Hornelen segment of the Nordfjord-Sogn Detachment Zone

through top-W displacement within the Nordfjord-Sogn Detachment Zone. The second stage of exhumation was initiated after 410 Ma as a broad, top-W ductile shear zone centered within the allochthons formed to accommodate lower crustal reorganization and the addition of large volumes of former-(U)HP continental crust to the base of the crust (Fig. 8B, C). Although a bulk constrictional strain field during exhumation is not ruled out (Krabbendam and Dewey, 1998; Osmundsen et al., 1998; Foreman et al., 2005), quartzite LPOs indicate that plane strain conditions define Zone top-W shear fabrics. During progressive exhumation and cooling, high-temperature shear fabrics passed through muscovite closure by ca. 400 Ma, and were cut by discrete ductile-brittle shear zones in the third and final stage of (U)HP exhumation (Fig. 8D). This three-stage model is significant in that it constrains normal-sense displacement to the component of exhumation that lifted UHP rocks from the lower to the upper crust, and underscores the importance of further work focusing on the mechanisms responsible for exhuming UHP rocks from mantle depths to the base of the crust.

CONCLUSIONS

Orogen-scale, normal-sense shear zones are commonly cited as one of the primary mechanisms responsible for the exhumation of large UHP provinces, and the characterization of these crustal-scale detachments is essential to understanding the processes that exhume UHP rocks. Key thermobarometry geochronology, and structural geology results from the Nordfjord-Sogn Detachment Zone in western Norway indicate that (1) top-W shear within the shear zone initiated at lower crustal depths of 30–40 km; (2) top-W shear occurred between 410 Ma and 400 Ma during or immediately after UHP metamorphism; and (3) strain was partitioned relatively evenly throughout the shear zone and was not focused along tectonostratigraphic contacts. These results indicate that normal-sense displacement within the Nordfjord-Sogn Detachment Zone was
the primary mechanism responsible for post-orogenic exhumation of the Norwegian UHP provinces from the base of the crust, but not from mantle depths. This interpretation is consistent with a three-stage model for UHP exhumation that calls for crustal exhumation dominated initially by ductile, and ultimately, by ductile-brittle, normal-sense displacement and highlights the paucity of data pertaining to an initial stage of exhumation from mantle depths to the base of the crust.

ACKNOWLEDGMENTS

Thanks to Torgeir Andersen for his encouragement and for sharing his insights on Norwegian geology with us on countless field excursions; to Phil Gans and Jim Mattinson for thoughtful comments on the manuscript; and to Andrew Kylander-Clark, Emily Peterman, Matt Rickit, Dave Root, Emily Walsh, and Dave Young for countless fruitful discussions regarding Caledonian tectonics. Careful reviews and helpful comments were received from Per Terje Osmundsen and Alexander Kuehn. This work was partially funded by the Joint Committee on Lithotectonic Studies.

REFERENCES CITED

Bryhni, I., 1997, Atlas maps, scale 1:50,000: Foreløgip utgave Norges geologiske undersøkelse.}

IN PRESS